【摘要】高三一輪復(fù)習(xí)第四章 平面向量與復(fù)數(shù)平面向量基本定理及坐標(biāo)運(yùn)算【教學(xué)目標(biāo)】..、減法與數(shù)乘運(yùn)算..【重點(diǎn)難點(diǎn)】,會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn),算理解用坐標(biāo)表示的平面向量共線的條件;,提高分析問題和解決問題的能力;【教學(xué)策略與方法】自主學(xué)習(xí)、小組討論法、師生互動法【教學(xué)過程】教學(xué)流程教師活動學(xué)生活動設(shè)計(jì)意
2025-04-17 12:32
【摘要】平面向量的坐標(biāo)表示與運(yùn)算OxyijaA(x,y)a1.以原點(diǎn)O為起點(diǎn)作,點(diǎn)A的位置由誰確定?aOA?由a唯一確定2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)的關(guān)系?兩者相同向量a坐標(biāo)(x,y)一一對應(yīng)復(fù)習(xí)回顧已知
2024-11-18 12:09
【摘要】§及其幾何意義§平面向量的加法運(yùn)算以前,乘車從慈溪去嘉興要先從慈溪到杭州再由杭州到嘉興,則兩次位移的總效果如何?嘉興慈溪杭州1、位移與位移的和ABBC2、位移AC結(jié)論:動點(diǎn)從點(diǎn)A直接位移到點(diǎn)C,與兩次連續(xù)位
2025-08-04 22:32
【摘要】選擇題已知a,b是平面內(nèi)兩個互相垂直的單位向量,若向量c滿足(a-c)·(b-c)=0,則|c|的最大值是(???).A.1???B.2???C.???D.C???又∵,,,∴
2025-06-25 15:23
【摘要】三角函數(shù)與平面向量專題三????110)20(ABABAB?向量的概念及表示向量的概念:既有大小又有方向的量.注意向量和數(shù)量的區(qū)別.向量常用有向線段來表示,注意不能說向量就是有向線段.零向量和
2024-11-12 01:26
【摘要】西安高新第三中學(xué)導(dǎo)學(xué)案學(xué)科數(shù)學(xué)編寫孫晉校對班級高一()班小組學(xué)生評價課題第1課時課題:§2.4平面向量的坐標(biāo)學(xué)習(xí)目
2025-04-16 23:06
【摘要】(二)2.3.2平面向量的坐標(biāo)運(yùn)算(二)【學(xué)習(xí)要求】1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代
2025-01-13 20:56
【摘要】第五單元平面向量與復(fù)數(shù)第一節(jié)平面向量的概念及其線性運(yùn)算基礎(chǔ)梳理名稱定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長度為的向量;其方向是任意的
2024-11-12 18:19
【摘要】向量及向量的基本運(yùn)算高三備課組1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向是任意的,與任意向量平行。注意與
2024-11-10 07:31
【摘要】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過程與方法掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向
2024-11-19 17:32
【摘要】平面向量的正交分解及坐標(biāo)表示一、向量的分解1e2eaADFE量的分解、通過幾何畫板研究向1的分解圖線性和與為、請畫212eea1:,1????μλDCBACμABλAD共線當(dāng)且僅當(dāng)、、三點(diǎn)則、如圖令例ABCD已知O,A,B是平面上的三個點(diǎn),直線AB上有一點(diǎn)C,滿足
2025-07-25 06:26
【摘要】第2節(jié)平面向量基本定理及其坐標(biāo)表示(對應(yīng)學(xué)生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-12 01:35
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【摘要】共線向量與共面向量ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點(diǎn)E是面A’C’的中心,求下列各式中的x,y.EABCDDCBA)()1(''
2025-07-25 15:38
【摘要】基礎(chǔ)自主回扣命題熱點(diǎn)突破知能綜合檢測目錄下一頁上一頁末頁首頁章首課前練習(xí):已知正△ABC的邊長為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會
2025-07-23 07:12