【摘要】《常見函數(shù)的導(dǎo)數(shù)》同步檢測一、基礎(chǔ)過關(guān)1.下列結(jié)論中正確的個(gè)數(shù)為________.[來源:zz^@step&.*%]①f(x)=ln2,則f′(x)=12;[來@&*源^:中教~網(wǎng)]②f(x)=1x2,則f′(3)=-227;③f(x)=2x,則f′(x)=2xln2;
2024-12-07 20:51
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)練習(xí)題一、選擇題=的導(dǎo)數(shù)是A.B.C.-D.-=sin3(3x+)的導(dǎo)數(shù)為(3x+)cos(3x+)(3x+)cos(3x+)(3x+)D.-9sin2(3x+)cos(3x+)=cos(sinx)的導(dǎo)數(shù)為A.-[sin(si
2025-03-25 00:18
【摘要】對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學(xué)的內(nèi)容.有了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-15 02:15
【摘要】上頁下頁結(jié)束返回首頁四、隱函數(shù)的導(dǎo)數(shù)對(duì)數(shù)求導(dǎo)法由參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)?隱函數(shù)的導(dǎo)數(shù)?對(duì)數(shù)求導(dǎo)法由參數(shù)?方程所確定函數(shù)的導(dǎo)數(shù)上頁下頁結(jié)束返回首頁1、隱函數(shù)的導(dǎo)數(shù)P102定義:.)(0),(,,,0),(xf
2025-02-21 12:49
【摘要】1北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》河北隆堯第一中學(xué)2一、教學(xué)目標(biāo):1、知識(shí)與技能:會(huì)求函數(shù)的最大值與最小值。2、過程與方法:通過具體實(shí)例的分析,會(huì)利用導(dǎo)數(shù)求函數(shù)的最值。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)最大值與最小值的求法教學(xué)難點(diǎn):函數(shù)最
2025-08-05 06:05
【摘要】1第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-04-30 12:01
【摘要】基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2024-11-03 19:25
2025-07-25 05:39
【摘要】(4).對(duì)數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【摘要】抽象函數(shù)的導(dǎo)數(shù)問題所謂抽象函數(shù),即函數(shù)解析式未知的函數(shù),這幾年很流行抽象函數(shù)與導(dǎo)數(shù)結(jié)合的問題,此類問題一般有兩種方法:(1)根據(jù)條件設(shè)法確定函數(shù)的單調(diào)性;(2)要根據(jù)題目給定的代數(shù)形式,構(gòu)造函數(shù),確定單調(diào)性,而構(gòu)造什么樣的函數(shù),一方面要和已知條件含有的式子特征緊密相關(guān),這要求我們必須非常熟悉兩個(gè)函數(shù)的和、差、積、商的求導(dǎo)公式;另外一方面,由于此類問題往往是選填題,問題的結(jié)構(gòu)往往
2025-07-23 09:41
【摘要】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動(dòng)過程中,在某時(shí)刻的瞬時(shí)速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個(gè)統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:);()
2025-08-16 01:30
【摘要】一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?y?為了解決上面的問題
2025-04-28 23:00
【摘要】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)本節(jié)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點(diǎn):用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對(duì)數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xx
2024-10-19 11:54
【摘要】,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間(對(duì)多項(xiàng)式函數(shù)求導(dǎo)一般不超過三次).;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(對(duì)多項(xiàng)式函數(shù)求導(dǎo)一般不超過三次);會(huì)求閉區(qū)間上函數(shù)的最大值、最小值(對(duì)多項(xiàng)式函數(shù)求導(dǎo)一般不超過三次)..在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有
2025-08-23 15:21
【摘要】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33