freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

ldo誤差放大器頻率技術(shù)分析與設(shè)計(jì)畢業(yè)設(shè)計(jì)論文-全文預(yù)覽

2025-07-17 07:20 上一頁面

下一頁面
  

【正文】 to find transconductance values for each amplifier stage (this is a first limitation since transconductances are generally set by other specifications). Moreover, the particular choice of the capacitor values limits the maximum achievable bandwidth and the use of the feedforward transconductance has detrimental effects on the CMRR, as it creates an asymmetrical inputoutput path increasing the monmode gain by approximately one gain stage.Recently, another approach for RHP zero removal was reported [14]. It employs an auxiliary inverting stage which is used to increase (with the Miller effect) the internal pensation capacitor. This auxiliary stage is not loaded by the external load capacitor , but only by parasitic capacitances. In such a manner small pensation capacitors can be used allowing increased bandwidth and slewrate at the expense of a limited increase in circuit plexity and power dissipation. However, the proposed implementation [20, Fig. 6] has the dampingfactorcontrol stage which operates in openloop conditions, thus, its bias point stability is endangered. Except for the approach described in [15], in all existing works, the use of nulling resistors to provide RHP zero cancellation have been a priori excluded. It is our conviction that this method remains one of the best suited because of its inherent circuitlevel simplicity, lowvoltage lowpowerrequirements, and the possibility of converting a RHP zero into a lefthalfplane (LHP) one.The purpose of this paper is twofold.? The NM pensation is reviewed.? An efficient approach based on nulling resistors is presented.Section II presents a new, simple designoriented method which, by neglecting the effects of parasitic zeros, provides results in agreement with those reported in previously published works. As customary in amplifier design, we use the phase margin ( ) as the main design parameter which, in conjunction with the gainbandwidth product (GBW), is the most meaningful and can simply be set by a pencilandpaper putation. Techniques for the removal of RHP zeros using nulling resistors are also dealt with in Section III, and an optimization of the method suggested in [15] is given. In these above two sections an assessment and optimization of previously presented works is hence attempted. Regarding the second point, a pensation approach which exploits double pole–zero cancellation is presented in Section IV. Finally, SPICE simulations on a threestage amplifier example implemented in a m CMOS technology and powered with a 2V supply are provided in Section V.II. NM COMPENSATIONIn this section, the NM pensation technique is reviewed by use of a novel designoriented approach. Let us consider the smallsignal equivalent circuit of a threestage amplifier depicted in Fig. 2 including the pensation capacitors. Paramete。最后感謝各位評(píng)審老師在百忙之中抽出寶貴的時(shí)間來評(píng)閱論文,感謝老師們的指導(dǎo)。你們便是我堅(jiān)強(qiáng)的后盾,在相互交流過程中,從你們身上學(xué)到了寶貴的知識(shí)和經(jīng)驗(yàn)。首先我要感謝我的導(dǎo)師周前能老師在我完成論文的過程中,他給予了我很多幫助,教我們查文獻(xiàn)、看文獻(xiàn),教我們學(xué)軟件、用軟件,教我們從剛開始接到一個(gè)課題怎樣一步步地完成。對于誤差放大器而言,電路結(jié)構(gòu)和參數(shù)還可進(jìn)一步優(yōu)化。圍繞SMFFC拓?fù)浣Y(jié)構(gòu)建立其傳輸函數(shù),并對其傳輸函數(shù)進(jìn)行分析,從理論上分析得到:調(diào)整其所產(chǎn)生的左半平面的零點(diǎn)位置能夠獲得極大的增益帶寬積。由于LDO和開關(guān)電源的要求,高帶寬、高增益、低功耗、小面積的誤差放大器一直是研究的熱點(diǎn)。均符合指標(biāo)要求。即,同理,對vss進(jìn)行AC掃描,其仿真結(jié)果如下所示:圖416 PSRR仿真電路圖由仿真結(jié)果可知,低頻時(shí)仿真值為102dB。其輸出波形為:圖44 SFMMC三級(jí)誤差放大器SR輸出波形圖將上升沿放大,具體如下圖所示:圖45 上升沿示意圖所以(v/us)下降沿波形圖如下所示:圖46 下降沿示意圖所以(v/us)建立時(shí)間可以計(jì)算器計(jì)算具體如下:圖47 建立時(shí)間計(jì)算示意圖在容差為2%的情況下計(jì)算上升沿和下降沿的建立時(shí)間分別為:ST+=ST =輸入共模范圍仿真輸入共模范圍電路圖如下所示:圖48 輸入共模范圍電路圖圖49 輸入共模范圍仿真圖如上圖所示,三級(jí)放大器共模輸入范圍為(~)v輸出范圍仿真輸出范圍仿真電路圖如下所示:圖410 輸出范圍仿真電路圖因,且可取,對直流源vin進(jìn)行DC掃描,仿真結(jié)果圖為:圖411 輸出范圍仿真結(jié)果圖如上圖所示,三級(jí)放大器輸出范圍為(~)vCMRR仿真CMRR仿真電路圖如下所示圖412 CMRR仿真電路圖如上圖所示,vin與輸出之間接一個(gè)小信號(hào)交流源,vin+通過小信號(hào)交流源和偏置電流源接地,對小信號(hào)交流源進(jìn)行AC掃描,仿真結(jié)果如下所示:圖413 CMRR仿真結(jié)果圖由仿真結(jié)果可知??傠娏?,所以,總體功耗為,符合低壓低功耗要求。共同構(gòu)成了推挽輸出級(jí)。第四章 誤差放大器參數(shù)分析與仿真第一節(jié) 參數(shù)分析與計(jì)算三級(jí)放大器的增益、帶寬、頻率響應(yīng)、PSRR等都影響LDO的性能,三級(jí)放大器設(shè)計(jì)條件及指標(biāo)如下:①Vdd=1V,Vss=1V ②CLoad=100pF,R=25KΩ③DCgain≥90dB ④Phase margin≥600⑤GBW≥ ⑥Power≤4mW根據(jù)前兩章的分析,此放大器第一級(jí)采用折疊式共源共柵形式;第二級(jí)采用帶恒流源負(fù)載的共源放大器;第三級(jí)采用推挽輸出形式;且整個(gè)電路采用SFMMC補(bǔ)償形式。第三節(jié) 本章小結(jié)本章主要對誤差放大器的電路結(jié)構(gòu)進(jìn)行分析和設(shè)計(jì)。由(344)可知,分子中的s2項(xiàng)前面是負(fù)號(hào),s項(xiàng)前面是正號(hào),則SFMMC左右半平面零點(diǎn)各有一個(gè),左半平面零點(diǎn)比右半平面零點(diǎn)所處的頻率低,這有助于提高頻率響應(yīng)。SMFFC(Single Miller Capacatior Feedforward Frequency Compensation)SFMMC拓?fù)浣Y(jié)構(gòu)如圖38所示:圖38 SFMMC拓?fù)浣Y(jié)構(gòu)示意圖SFMMC采用前饋通路提供一個(gè)左半平面零點(diǎn)以補(bǔ)償?shù)谝粋€(gè)非主極點(diǎn)。零點(diǎn)可根據(jù)放大器傳輸函數(shù)的分子中二次方程求出,且與Cm有關(guān),因?yàn)镃m很小,所以在穩(wěn)定性分析中所有的零點(diǎn)位于高頻處可以被忽略。前面假設(shè),零點(diǎn)位于高頻處可被忽略,非主極點(diǎn)的計(jì)算如下所示: 由傳輸函數(shù)可知,非主極點(diǎn)位于左半平面。放大器直流增益為: (327)放大器主極點(diǎn)頻率為: (328)因此,增益帶寬積為: (329)通過單位增益負(fù)反饋閉環(huán)輸出函數(shù)可分析SMC放大器的穩(wěn)定性。并且,第一級(jí)輸出和最后一級(jí)輸出之間多了一個(gè)跨導(dǎo)gmf,在輸出級(jí)形成了推挽形式,提升了放大器的瞬態(tài)響應(yīng)[8],具體如下圖所示:圖37 SMC拓?fù)浣Y(jié)構(gòu)拓?fù)浣Y(jié)構(gòu)中,電容Cm使第一主極點(diǎn)(p1)和第三個(gè)極點(diǎn)(p3)分裂。另外由以上公式可知,大的負(fù)載電容需要較大值的補(bǔ)償電容對電路進(jìn)行頻率補(bǔ)償,然而,根據(jù)式221大的負(fù)載電容在很大程度上限制了增益帶寬積。下面簡要分析集中電容補(bǔ)償方式:NMC(NestedMiller Compensation)圖36為NMC拓?fù)浣Y(jié)構(gòu)[4],通過兩個(gè)電容和對三個(gè)極點(diǎn)進(jìn)行分裂,如下圖:圖36 NMC拓?fù)浣Y(jié)構(gòu)假設(shè)寄生電容,遠(yuǎn)小于和(后面分析都有這個(gè)假設(shè)條件支撐),其傳遞函數(shù)[5]為: (320)它采用了極點(diǎn)復(fù)述法來分裂極點(diǎn)的方法,根據(jù)Butterworth歸一化頻率響應(yīng)[6,7],并可以得出兩個(gè)米勒電容,輸出電容,以及增益帶寬積之間的關(guān)系表達(dá)式: (321)這樣補(bǔ)償后,對三個(gè)極點(diǎn)復(fù)數(shù)分裂,它們的位置如下:主極點(diǎn): (322)第二和第三極點(diǎn): (323)另外,在還有兩個(gè)零點(diǎn),分別位于其左半和右半平面。圖35 兩種系統(tǒng)增益相位圖若系統(tǒng)只有一個(gè)極點(diǎn),則不可能產(chǎn)生大于90度的相移,但常用放大器中包含有許多極點(diǎn)。 頻率補(bǔ)償?shù)幕A(chǔ)分析圖34為一個(gè)負(fù)反饋系統(tǒng),如圖所示,其中Vi為閉環(huán)輸入信號(hào),f為反饋系統(tǒng),Verr為開環(huán)輸入信號(hào)(閉環(huán)輸入信號(hào)與反饋信號(hào)的差),Vo為輸出信號(hào)。跨導(dǎo)為,輸出電阻為:,其增益為: (313)當(dāng)時(shí),上式變?yōu)? (314)根據(jù)米勒效應(yīng),計(jì)算輸入電容為: (315)輸出電容為: (316)其中,為輸出級(jí)所帶負(fù)載。 輸出級(jí)輸出級(jí)既要提供一定的增益和較大的輸出擺幅,還要以電壓或者電流的形式提供足夠的輸出功率,保證高效率。這里主要是為了方便分析所以簡化了。 中間級(jí)在三級(jí)放大器中,中間級(jí)的主要作用是提升增益,增益的大小需要根據(jù)拓?fù)浣Y(jié)構(gòu)的要求而定,同時(shí)需要注意的是其寄生電容對整體電路的頻率的影響。 第三章 誤差放大器電路分析與設(shè)計(jì)第一節(jié) 基本電路單元設(shè)計(jì)一個(gè)三級(jí)放大器必然包括基本的三級(jí):輸入級(jí)—提供高增益幅度;中間增益級(jí)—進(jìn)一步提升增益幅度;輸出增益級(jí)—提高輸出擺幅和增益幅度。 (23) 圖22電源電壓變化時(shí)穩(wěn)壓器的工作過程 第二節(jié) 誤差放大器對LDO的影響
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1