【摘要】其通解形式為非齊次形式:通解為:設(shè)特征方程??兩根為?。非齊次形式:參考資料:本人大學(xué)高數(shù)課件
2025-06-29 13:05
【摘要】實(shí)驗(yàn)四種群數(shù)量的狀態(tài)轉(zhuǎn)移——微分方程一、實(shí)驗(yàn)?zāi)康募耙饬x[1]歸納和學(xué)習(xí)求解常微分方程(組)的基本原理和方法;[2]掌握解析、數(shù)值解法,并學(xué)會(huì)用圖形觀察解的形態(tài)和進(jìn)行解的定性分析;[3]熟悉MATLAB軟件關(guān)于微分方程求解的各種命令;[4]通過范例學(xué)習(xí)建立微分方程方面的數(shù)學(xué)模型以及求解全過程;通過該實(shí)驗(yàn)的學(xué)習(xí),使學(xué)生掌握微分方程(組)求解方法(解析法
2025-06-26 18:22
【摘要】修改稿冷連軋動(dòng)態(tài)變規(guī)格張力微分方程TandemcoldrollingFGCtensiondifferentialequation摘要:介紹了冷連軋動(dòng)態(tài)變規(guī)格概念及軋制工藝特點(diǎn)。以冷連軋機(jī)組機(jī)架間帶鋼受張力拉伸為
2025-06-23 03:06
【摘要】普通方程和微分方程方程組的求解1、線性方程組的解法(1)、直接法使用“/”和“\”:a=magic(5)b=diag(ones(5))a\b使用lu分解X=[377;170;235][LU]=lu(X)b=[123]'Y1=L\by=U\Y1(2)、迭代法Jacobi迭代法:%該函數(shù)用Jacobi迭代法
2025-06-23 23:58
【摘要】課程名稱(中文):偏微分方程數(shù)值解專題課程名稱(英文):Sometopicsonnumericalsolutionsofpartialdifferentialequations一)課程目的和任務(wù):有限差分方法是微分方程定解問題的最廣泛的數(shù)值方法之一,其基本思想是用差商近似代替導(dǎo)數(shù),用有限個(gè)未知量的差分方程組的解作為微分方程定解問題的解。本課程旨在介紹非線性拋物和
2025-06-07 22:58
【摘要】數(shù)學(xué)實(shí)驗(yàn)ExperimentsinMathematics重慶郵電學(xué)院基礎(chǔ)數(shù)學(xué)教學(xué)部微分方程實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容MATLAB2、學(xué)會(huì)用Matlab求微分方程的數(shù)值解.實(shí)驗(yàn)軟件1、學(xué)會(huì)用Matlab求簡單微分方程的解析解.1、求簡單微分方程的解析解.4、實(shí)驗(yàn)作業(yè).2、求微分方程的數(shù)值解.3、數(shù)學(xué)建模實(shí)例
2025-01-04 11:38
【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【摘要】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-20 04:55
【摘要】一、二階線性微分方程解的結(jié)構(gòu)第四模塊微積分學(xué)的應(yīng)用第十三節(jié)二階常系數(shù)線性微分方程二、二階常系數(shù)線性微分方程的解法三、應(yīng)用舉例一、二階線性微分方程解的結(jié)構(gòu)二階微分方程的如下形式y(tǒng)?+p(x)y?+q(x)y=f(x)稱為二階線性微分方程,簡稱二階線性方程.
2025-01-20 02:03
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【摘要】SYSU-IFCEN2013-2014實(shí)驗(yàn)報(bào)告Projetprofessionnel解常微分方程姓名:Vincent年級:2010,學(xué)號:1033****,組號:5(小組),4(大組)1.數(shù)值方法:我們的實(shí)驗(yàn)?zāi)繕?biāo)是解常微分方程,其中包括幾類問題。一階常微分初值問題,高階常微分初值問題,常微分方程組初值問題,二階常微分方程邊值問題,二階線性常微分方程邊值問題。對待上面
2025-07-22 00:08
【摘要】例1.求微分方程的通解。解:,分離變量,兩邊積分:記,方程通解為:。:注:事實(shí)上,,積分后得:,。例2.求微分方程滿足初始條件的特解。解:分離變量:,兩邊積分:,方程的通解為:。初始條件,則,,所求特解:或例3.設(shè)()連續(xù)可微且,已知曲線、軸、軸上過原點(diǎn)及點(diǎn)的兩條垂線所圍成的圖形的面積值與曲線的一段弧長相等,求。
2025-09-25 16:01
【摘要】現(xiàn)代偏微分方程簡介課程號:06191090課程名稱:現(xiàn)代偏微分方程英文名稱:ModernPartialDifferentialEquations周學(xué)時(shí):3-0學(xué)分:3預(yù)修要求:常微分方程、泛函分析、偏微分方程基礎(chǔ)內(nèi)容簡介:現(xiàn)代偏微分方
2025-09-25 15:57
【摘要】微分方程習(xí)題§1基本概念1.驗(yàn)證下列各題所給出的隱函數(shù)是微分方程的解.(1)(2)2..已知曲線族,求它相應(yīng)的微分方程(其中均為常數(shù))(一般方法:對曲線簇方程求導(dǎo),然后消去常數(shù),方程中常數(shù)個(gè)數(shù)決定求導(dǎo)次
2025-06-24 23:00
【摘要】§解對初值的連續(xù)性和可微性定理200(,),(,)(1)()dyfxyxyGRdxyxy?????????考察的解對初值的一些基本性質(zhì)00(,,)yxxy???解對初值的連續(xù)性?解對初值和參數(shù)的連續(xù)性
2025-01-20 04:56