【摘要】......專題總復(fù)習(xí)(一)全等三角形、軸對稱一、復(fù)習(xí)目標(biāo):1、理解全等三角形概念及全等多邊形的概念.2、掌握并會運(yùn)用三角形全等的判定和性質(zhì),能應(yīng)用三角形的全等解決一些實(shí)際問題.3、通過復(fù)習(xí),能夠應(yīng)用所學(xué)知識解決一些實(shí)際
2025-04-16 23:10
【摘要】合作中學(xué)習(xí)學(xué)習(xí)中創(chuàng)新全等三角形復(fù)習(xí)中考總復(fù)習(xí)之--學(xué)習(xí)目標(biāo):通過概念的復(fù)習(xí)和典型例題評析,使學(xué)生掌握三角形全等的判定、性質(zhì)及其應(yīng)用。學(xué)習(xí)重點(diǎn):典型例型評析。學(xué)習(xí)難點(diǎn):學(xué)生綜合能力的提高。全等三角形的性質(zhì):對應(yīng)邊、對應(yīng)角相等。全等三角形的判定:知識點(diǎn)一般三角形全等的判定:
2025-01-12 22:52
【摘要】全等三角形問題中常見的輔助線——倍長中線法△ABC中,AD是BC邊中線方式1:直接倍長,(圖1):延長AD到E,使DE=AD,連接BE方式2:間接倍長1)(圖2)作CF⊥AD于F,作BE⊥AD的延長線于E,連接BE2)(圖3)延長MD到N,使DN=MD,連接CD【經(jīng)典例題】例1已知,如圖△ABC中,AB=5,AC=3,則中線
2025-03-24 07:41
【摘要】中考專題復(fù)習(xí)全等三角形知識點(diǎn)總結(jié)一、全等圖形、全等三角形::能夠完全的兩個圖形就是全等圖形。:全等多邊形的、分別相等。:三角形是特殊的多邊形,因此,全等三角形的對應(yīng)邊、對應(yīng)角分別相等。同樣,如果兩個三角形的邊、角分別對應(yīng)相等,那么這兩個三角形全等。說明:全等三角形對應(yīng)邊上的高,中線相等,對應(yīng)角的平分線相等
2025-07-23 17:44
【摘要】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”
2025-03-26 04:26
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-24 01:22
【摘要】全等三角形總復(fù)習(xí)導(dǎo)學(xué)案一、全等三角形的概念及其性質(zhì)1、全等三角形的定義:能夠完全的兩個三角形叫做全等三角形。2、全等三角形性質(zhì):(1)(2)(3)(4)
2024-11-21 21:56
【摘要】三角形中做輔助線的技巧口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗(yàn)。線段和差不等式,移到同一三角去。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。1、由角平分線想到的輔助線
2025-03-24 12:31
【摘要】全等三角形泰安六中蘇曉林1、理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊、對應(yīng)角。2、理解全等三角形的性質(zhì);掌握兩個三角形全等的條件;3、會用全等三角形的進(jìn)行角、線段的有關(guān)計算和證明。從近幾年的中考題來看,全等三角形占有重要的地位。時間全等三角形相關(guān)題型分值(分)
2025-01-12 23:17
【摘要】全等三角形復(fù)習(xí)1、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形性質(zhì):(1):全等三角形的對應(yīng)邊相等、對應(yīng)角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。3、全等三角形的判定:邊邊邊:三邊對應(yīng)相等的兩個三角形全等(“SSS”)
2025-06-07 15:45
【摘要】等腰三角形常用輔助線專題練習(xí)(含答案):已知,點(diǎn)D、E在三角形ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE。證明:作AF⊥BC,垂足為F,則AF⊥DE?!逜B=AC,AD=AE又∵AF⊥BC,AF⊥DE,∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)?!郆D=CE.,在三角形ABC中,AB=AC,AF平行B
2025-06-25 05:16
【摘要】構(gòu)造等腰三角形解題的輔助線做法呂海艷等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識結(jié)合在一起考查。在許多幾何問題中,通常需要構(gòu)造等腰三角形才能使問題獲解。那么如何構(gòu)造等腰三角形呢?一般有以下四種方法:(1)依據(jù)平行線構(gòu)造等腰三角形;(2)依據(jù)倍角關(guān)系構(gòu)造等腰三角形;(3)依據(jù)角平分線+垂線構(gòu)造等腰三角形;(4)依據(jù)120°角或60°角,常補(bǔ)形構(gòu)
2025-03-25 04:37
【摘要】全等三角形證明題精選 一.解答題(共30小題)1.四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E、F.(1)求證:△ADE≌△CBF;(2)若AC與BD相交于點(diǎn)O,求證:AO=CO.2.如圖,已知點(diǎn)B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.(1)求證:AC∥DE;(2)若BF=13,
2025-06-19 22:55
2025-06-19 23:08
【摘要】泰安六中初四下學(xué)期數(shù)學(xué)學(xué)案課題全等三角形的復(fù)習(xí)學(xué)案第1課時學(xué)習(xí)目標(biāo)了解全等三角形的概念;理解全等三角形的性質(zhì);掌握兩個三角形全等的條件;會用全等三角形的進(jìn)行角、線段的有關(guān)計算和證明。重、難點(diǎn)1.全等三角形的概念、性質(zhì)、判定和應(yīng)用。。教師引導(dǎo)學(xué)習(xí)過程
2025-01-14 11:11