【摘要】課題: 等腰三角形(第1課時) 天津市第一中學丁百靈教學任務分析教學目標知識技能1.掌握等腰三角形的有關概念和性質(zhì);2.熟練運用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的證明和計算問題.數(shù)學思考1.通過觀察等腰三角形的對稱性,發(fā)展形象思維;2.通過動手操作、觀察、思考,積累數(shù)學活
2025-04-17 07:58
【摘要】第一篇:等腰三角形的性質(zhì)教學評價 《等腰三角形的性質(zhì)》教學反思 焦作市武陟縣實驗中學 董紅峰 人們常說“數(shù)學是思維的體操”,這主要指通過數(shù)學知識學習,來培養(yǎng)、訓練學生的邏輯思維,同時發(fā)展學生的...
2024-11-12 12:53
【摘要】第一篇:等腰三角形的性質(zhì)教學反思 等腰三角形的性質(zhì)教學反思 一、教材分析 等腰三角形作為特殊三角形的典范,既是三角形、軸對稱等知識的深化,又是證明角相等、線段相等、直線垂直的常用依據(jù),也為三角形...
2024-11-12 12:46
【摘要】BS版八年級下第一章三角形的證明1等腰三角形第1課時等腰三角形的性質(zhì)4提示:點擊進入習題答案顯示671235ADBBB8DCC提示:點擊進入習題答案顯示101112
2024-12-28 00:21
【摘要】等腰三角形的性質(zhì)與應用
2024-11-24 13:18
【摘要】等腰三角形(三)◆隨堂檢測1一個等邊三角形的角平分線、高、中線的總條數(shù)為_________.,已知線段AB,分別以AB、為圓心,大于12AB長為半徑畫弧,兩弧相交于點C、Q,連結(jié)CQ與AB相交于點D,連結(jié)AC,BC.那么:(1)∠ADC?________度;(2)當線段4
2024-11-13 01:46
【摘要】宇軒圖書下一頁上一頁末頁目錄首頁第20講等腰三角形考點知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講
2025-01-15 06:47
【摘要】同學們好!【看看誰的手巧】請把一根塑料管剪成三段,把它們首尾相連成一個等腰三角形剩下的兩邊長為8cm和6cm等腰三角形圓規(guī)刻度尺量角器123能否用你得到的工具來判斷△ABC是不是等腰三角形?★等邊對等角★等角對等邊因為AB=AC所以∠B=∠C所
2024-11-03 15:44
【摘要】第一章三角形的證明1.等腰三角形(三)湖北宜昌市長江中學李玉平一、學生知識狀況分析本節(jié)課是等腰三角形的第三課時,通過前面兩課時的學習,學生已經(jīng)掌握了等腰三角形的相關性質(zhì),并知道了用綜合法證明命題的基本要求和步驟。為學習等腰三角形的判定定理奠定了知識和方法的基礎。二、教學任務分析本節(jié)課的主要任務是探索等
2024-11-24 17:07
【摘要】等腰三角形的軸對稱性結(jié)論:等腰三角形是軸對稱圖形DCBA結(jié)論2結(jié)論三頂角平分線所在直線是它的對稱軸底邊上的高所在直線是它的對稱軸底邊上的中線所在直線是它的對稱軸符號語言:在ΔABC中結(jié)論:等腰三角形的兩個底角相等簡稱:等邊對等角CBA∵AB=AC∴∠B=
2024-11-09 12:24
【摘要】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個三角形小花壇,現(xiàn)在想把它分割成兩個三角形,使之可以種上不同的花。你會怎么分?ABCP問題2:如果要分割成兩個等腰三角形呢?原三角形的角度不知道。無法分!從頂點引一條線段問題3:如果花壇
2024-11-24 15:15
【摘要】等腰三角形性質(zhì)的應用——復習課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
【摘要】等腰三角形的性質(zhì)定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質(zhì)定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質(zhì)定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
【摘要】微課錄制《等腰三角形的性質(zhì)》安陽縣永和鎮(zhèn)一中八年級朱麥芹性質(zhì)1(等邊對等角)等腰三角形的兩個底角相等。ABCD已知:△ABC中,AB=AC求證:∠B=?C想一想:?議一議:角形?
2024-11-24 17:30
【摘要】八年級上冊等腰三角形(第2課時)問題等腰三角形性質(zhì)定理的內(nèi)容是什么?這個命題的題設和結(jié)論分別是什么?性質(zhì)定理的條件是:一個三角形中有兩條邊相等.結(jié)論:這兩條邊所對的角相等.探索等腰三角形的判定定理作頂角的平分線或底邊上的高或底邊的中線,將一個三角形的問題轉(zhuǎn)化為兩個全等三