freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

大學(xué)物理教學(xué)案-全文預(yù)覽

2025-05-28 22:00 上一頁面

下一頁面
  

【正文】 )設(shè)波源波動方程為可知: 由旋轉(zhuǎn)矢量知:∴ (SI)(2)波動方程為: (SI)(3)時波形方程為: (SI)(4)處質(zhì)點振動方程為 (SI)(5)所求位相差為:,x1處質(zhì)點位相超前。平移距離圖134例132:一平面簡諧波沿+x方向傳播,波速為,在傳播路徑的A點處,質(zhì)點振動方程為 (SI),試以A、B、C為原點,求波動方程。例131:橫波在弦上傳播,波動方程為 (SI)求:(1)(2)畫出時波形圖。波動方程變成了處質(zhì)點振動方程。根據(jù)位相(或)關(guān)系,式(135)又可化為 (136)注意:(1)原點處質(zhì)點的振動初相不一定為0;(2)波源不一定在原點,因為坐標是任取的。圖133設(shè)振動傳播過程中振幅不變(即介質(zhì)是均勻無限大,無吸收的)為了找出波動過程中任一質(zhì)點任意時刻的位移,我們在ox軸上任取一點p,坐標為,顯然,當振動從o處傳播到p處時,p處質(zhì)點將重復(fù)o處質(zhì)點振動。一般地說,介質(zhì)中各質(zhì)點振動是很復(fù)雜的,所以由此產(chǎn)生的波動也是很復(fù)雜的,但是可以證明,任何復(fù)雜的波都可以看作是由若干個簡諧波迭加而成的。橫波在固體中傳播速度為:縱波速度為:(液、氣、固體中)對大多數(shù)金屬,∴式中 :固體切變彈性模量:介質(zhì)的體積彈性模量:楊氏彈性模量:介質(zhì)質(zhì)量密度說明:波動速度與質(zhì)點振動速度是不同的物理量??捎? (131)說明:由波的形成過程可知,振源振動時,經(jīng)過一個振動周期,波沿波線傳出一個完整的波形,所以,波的傳播周期(或頻率)=波源的振動周期(或頻率)。在橫波情況下,波長可用相鄰波峰或相鄰波谷之間的距離表示。(2)球面波:波陣面為球面。同相面(波面):振動位相相同點連成的曲面??v波:(1)氣體、液體內(nèi)只能傳播縱波,而固體內(nèi)既能傳播縱波又能傳播橫波。如:水面波的傳播介質(zhì)是水;繩波的傳播介質(zhì)是繩;聲波的傳播介質(zhì)是空氣。當音叉振動時,它的振動引起附近空氣的振動,附近空氣的振動又引起更遠處空氣的振動,這樣振動就在空氣中傳播,形成了聲波。把一塊石頭投在靜止的水面上,可見到石頭落水處水發(fā)生振動,此處振動引起附近水的振動,附近水的振動又引起更遠處水的振動,這樣水的振動就從石頭落點處向外傳播開了,形成了水面波。合振動方程為:(仍為諧振動)由圖中三角形知: (129) 由圖中三角形知: (1210)討論:(1) 時(稱為位相相同) (2) 時(稱為位相相反) 例128:有兩個同方向同頻率的諧振動,其合成振動的振幅為,位相與第一振動的位相差為,若第一振動的振幅為,用振幅矢量法求第二振動的振幅及第一、第二兩振動位相差。由于、表示同一直線上距同一平衡位置的位移,所以合成振動的位移在同一直線上,而且等于上述兩分振動位移的代數(shù)和,即為簡單起見,用旋轉(zhuǎn)矢量法求分振動。在此,我們考慮一質(zhì)點同時參與兩個在同一直線的同頻率的振動。解:系統(tǒng)的總能量為(此時)不致從上滑落時,須有 圖1213 極限情況 即 167。例126:一物體連在彈簧一端在水平面上做諧振動,振幅為。原因是系統(tǒng)只有保守力作功,機械能要守恒。O 為原點。從內(nèi)轉(zhuǎn)角為 顯然〈方法二〉簡單。旋轉(zhuǎn)矢量與諧振動曲線的對應(yīng)關(guān)系(設(shè)) 圖128三、旋轉(zhuǎn)矢量法應(yīng)用舉例例123: 一物體沿x軸作簡諧振動,振幅為,周期為。二、簡諧振動的旋轉(zhuǎn)矢量表示法 圖127(1)旋轉(zhuǎn)矢量的矢端M在x軸上投影坐標可表示為x軸上的諧振動,振幅為(2)旋轉(zhuǎn)矢量以角速度旋轉(zhuǎn)一周,相當于諧振動物體在x軸上作一次完全振動,即旋轉(zhuǎn)矢量旋轉(zhuǎn)一周,所用時間與諧振動的周期相同?!?∵這是諧振動的微分方程(或與正比反向)∴小球在做諧振動。解:(1)的運動方程為由題意知:初始條件:時,可得: ∵ ∴ 2) 初始條件:時,∵,∴ 可見:對于給定的系統(tǒng),如果初始條件不同,則振幅和初相就有相應(yīng)的改變。是時的位相,稱為初相。由上可知: 或 ∵為周期,∴∵從時刻經(jīng)過1個周期時,物體又首次回到原來時刻狀態(tài),∴(余弦函數(shù)周期為) 可見:表示在秒內(nèi)物體所做的完全振動次數(shù),稱為角頻率(圓頻率)∵∴ 對于給定的彈簧振子,、都是一定的,所以、完全由彈簧振子本身的性質(zhì)所決定,與其它因素無關(guān)。反映了振動的強弱。諧振動的速度和加速度物體位移:速度: (125)加速度: (126)可知: 、曲線如下圖122圖123說明:(1)是諧振動的動力學(xué)特征;(2)是諧振動的運動學(xué)特征;(3)做諧振動的物體通常稱為諧振子。由牛頓第二定律知,加速度為 (為物體質(zhì)量)∵ ∴ ∵ 、均大于0 ∴ 可令 可有: (122)式(122)是諧振動物體的微分方程。這樣在彈性力作用下物體左右往復(fù)運動,即作機械振動。121簡諧振動彈簧振子運動如圖所取坐標,原點O在m平衡位置。圖  示意了平面電磁波某一時刻的波形情況。證:(1)平行板電容器(2)球形電容器例113:平行板電容器的正方形極板邊長為,當放電電流為時,忽略邊緣效應(yīng),求:(1) 兩極板上電荷面密度隨時間變化率;(2) 通過極板中如圖所示的正方形回路abcda區(qū)間的位移電流大?。唬?) 環(huán)繞此正方形回路的的大小。(1);(2)。麥克斯韋位移電流假設(shè)的根源就是變化的電場激發(fā)磁場。注意:位移電流和傳導(dǎo)電流的關(guān)系(1)共同點:都能產(chǎn)生磁場(2)不同點:位移電流是變化電場產(chǎn)生的(不表示有電荷定向運動,只表示電場變化),不產(chǎn)生焦爾熱;傳導(dǎo)電流是電荷的宏觀定向運動產(chǎn)生的,產(chǎn)生焦爾熱?!嗪停娢灰仆浚┮彩请S時間變化的,它的變化率為從上述方程看出,極板間電通量隨時間的變化率在數(shù)值上等于導(dǎo)線內(nèi)傳導(dǎo)電流;極板間電位移隨時間變化等于導(dǎo)線內(nèi)傳導(dǎo)電流密度,并且進一步分析知和同向,∴可設(shè)想和分別表示某種電流密度和電流,能把極板A、B間中斷的電流接下來,構(gòu)成電流的連續(xù)性?!呱鲜龇e分應(yīng)相等,∴出現(xiàn)了矛盾。但在含電容器的電路中,情況就不同了,無論是電容器充電還是放電,傳導(dǎo)電流都不能在電容器的兩極間通過,這時電流就不連續(xù)了。就其產(chǎn)生磁場來說,變化的電場與一電流等效,這個等效電流被稱為位移電流。(3)任意磁場中,能量可表示為例1012:用磁場能量方法解例109。所以,磁場能量為 (1010)此公式與電場能量相類似(),下面以螺線管為例,求出磁場能量密度表達式。K為電鍵。求互感系數(shù)。(2)互感電動勢與M意義由法拉第電磁感應(yīng)定律知,當回路大小、形狀、磁介質(zhì)、線圈相對位置不變時, (109)當線圈2分別有N1 、N2 匝數(shù),磁通鏈數(shù)分別為 (是一個線圈磁通量) M意義:①由(3)式知:在數(shù)值上等于其中一個線圈通有一個單位電流時在另外一個線圈中通過的磁通量。如上所述,一個回路的電流發(fā)生變化時,在另外一個回路中激發(fā)感應(yīng)電動勢的現(xiàn)象稱為互感現(xiàn)象,該電動勢稱為互感電動勢。(2)只與線圈大小、形狀、匝數(shù)、磁介質(zhì)有關(guān)。(2)L的意義:① 由(1)式知,自感系數(shù)L在數(shù)值上等于回路中電流為1個單位時通過回路的磁通量。)2.自感系數(shù)(1)定義:設(shè)通過回路電流為I,由畢—沙定律可知,這電流在空間任意一點產(chǎn)生的其大小與I成正比,所以通過回路本身的磁通量與I成正比,即 (106)式中:L定義為自感系數(shù)或自感,L與回路的大小、形狀、磁介質(zhì)有關(guān)(當回路無鐵磁質(zhì)時,L與I無關(guān))。104自感與互感現(xiàn)象一、自感現(xiàn)象1.自感現(xiàn)象當一回路中有電流時,必然要在自身回路中有磁通量,當磁通量變化時,由法拉第電磁感應(yīng)定律可知,在回路中要產(chǎn)生感應(yīng)電動勢?!唷?+=+= —= —= — = ∴為逆時針方向。(4)回路無導(dǎo)體時,只要,則例107:如圖所示,均勻磁場被限制在半徑為R的圓筒內(nèi),與筒軸平行。===及 = = 即 方向如上圖所示。只不過,對導(dǎo)體回路來說,有電荷定向運動,而形成感應(yīng)電流;而對于非導(dǎo)體回路雖然無感生電流,但感應(yīng)電動勢還是存在的。不同點:(1)渦旋電場是變化磁場產(chǎn)生的,電力線是閉合的,為非保守場(。渦旋電場對電荷的作用力是產(chǎn)生感生電動勢的非靜電力。103 感生電動勢 渦旋電場一、產(chǎn)生感生電動勢的非靜電力導(dǎo)體在磁場中運動時,其內(nèi)的自由電子也跟隨運動,因此受到磁力的作用,我們已經(jīng)知道,洛侖茲力是動生電動勢產(chǎn)生的根源,即是產(chǎn)生動生電動勢的非靜電力。CD產(chǎn)生的為 例105:如圖所示,平面線圈面積為S ,共N匝,在勻強磁場中繞軸以 速度勻速轉(zhuǎn)動。(上分量方向)〈方法二〉:用解設(shè)t=0時,AB位于AB‘位置,t時刻轉(zhuǎn)到實線位置,取AB‘BA為繞行方向(AB‘BA視為回路),則通過此回路所圍面積的磁通量為 ,∴ 沿方向。三、動生電動勢計算舉例例102:用 j解例1解:整個回路的電動勢即由運動引起的動生電動勢(其他部分段產(chǎn)生的動生電動勢為 (為標量,標量疊加)可知,(就是中學(xué)中常用的公式。單位正電荷受洛侖茲力為:(正電荷e受洛侖茲力為) (104)由電動勢定義,則動生電動勢為: 動生電動勢公式 (105)說明:(1)的方向為沿在上分量的方向??梢?,洛侖茲力正是產(chǎn)生動生電動勢的非靜電力。討論:(1)如果回路為匝,則(為單匝線圈磁通量)(2)設(shè)回路電阻為(視為常數(shù)),感應(yīng)電流在—內(nèi)通過回路任一橫截面的電量為可知與()成正比,與時間間隔無關(guān)。(2)楞次定律是能量守恒定律的反映。在此基礎(chǔ)上求出通過回路上所圍面積的磁通量,根據(jù)計算。二法拉第電磁感應(yīng)定律定律表述在一閉合回路上產(chǎn)生的感應(yīng)電動勢與通過回路所圍面積的磁通量對時間的變化率成正比。.. . . ..第十章 電磁感應(yīng)167。(2)閉合回路上處處有非靜電力時,整個回路都是電源,這時電動勢用普遍式表示:(3)電動勢是標量,和電勢一樣,將它規(guī)定一個方向,把從負極經(jīng)電源內(nèi)部到正極的方向規(guī)定為電動勢的方向。規(guī)定回路繞行方向與回路所圍面積的正法向滿足右手旋不定關(guān)系。說明:(1)實際上,法拉第電磁感應(yīng)定律中的“”號是楞次定律的數(shù)學(xué)表述。由楞次定律也能得知,沿逆時針方向。該電源的電動勢是如何形成的?或者說產(chǎn)生它的非靜電力是什么?從圖中可知,運動時,其上自由電子受洛侖茲力作用,從而B端有過剩的正電荷,A端有過剩的負電荷,形成了B端是電源正極,A端為負極,在洛侖茲力作用下,電子從正極移向負極,或等效地說正電荷從負極移向正極。二.動生電動勢公式的導(dǎo)出一個電子受洛侖茲力為 (103)它是產(chǎn)生動生電動勢的非靜電力。這時,相當一個開路電源,其端電壓與在數(shù)值上相等,但意義不同:是單位正電荷從移到時靜電力作的功,是單位正電荷從移到時非靜電力(洛侖茲力)作的功?!? 棒產(chǎn)生的電動勢為 ,即比點電勢高。大小為。(1) 圈中(2) 線圈電阻為R,求感應(yīng)電流解:(1)設(shè)t時刻,與夾角為,此時線圈磁通量為: 由法拉第電磁感應(yīng)定律知:(2) 167。該場稱為感生電場或渦旋電場。相同點:二者對電荷均有作用力。這就是說,只要通過某一閉合回路的磁通量發(fā)生變化,那么感應(yīng)電場沿此閉合回路的環(huán)流總是滿足 =。2) 筒外Q點取過Q點電力線為回路,繞行方向為順時針。(3)方向可用楞次定律判斷。解:根據(jù)磁場分布的對稱性,可知,變化磁場產(chǎn)生的渦旋電場的電力線示是一系列同心圓,圓心為O.方法一用解 取abcda 為繞行方向, =+++在bc、da上,垂直于 。167。(實際上,回路中電流不變,而形狀改變,則也引起自感電動勢。說明:(1)(106)、(107)式均可看作L的定義式,它們是等效的。求L=?解:設(shè)線圈電流為I,通過一匝線圈磁通量為通過N匝線圈磁通鏈數(shù)為由有(為螺線管的體積)說明:(1)由
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1