【摘要】“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):播放幻——劉徽劉徽(魏晉)數(shù)列極限引例:1、割圓術(shù):“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”——劉徽概念的引入1、割圓術(shù):“割之彌
2025-01-19 14:33
【摘要】第二節(jié)求導法則一、和、差、積、商的求導法則定理并且可導處也在點分母不為零們的和、差、積、商則它處可導在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【摘要】一、概念的引入§2.數(shù)列的極限我們在緒論中講到:我們利用階梯形的面積來逼近曲邊三角形的面積(見下頁演示).硯恢陪楔灰橡妒豪棠淪講焰墩爽賭篡愈甸竅包舌客鞠秀萄象限慣矣例班掙微積分86751微積
2025-01-20 05:31
【摘要】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【摘要】引例:截丈問題:“一尺之棰,日截其半,萬世不竭”;211?a第一天截下的杖長為;2122?a第二天截下的杖長為????;21nnan?天截下的杖長為第nna21?0數(shù)列{}na.2、數(shù)列數(shù)列對應(yīng)著數(shù)軸上一個點列,可看作一動點在數(shù)軸上依次取12,,,,.naaa注
2025-08-05 07:20
【摘要】備考基礎(chǔ)·查清熱點命題·悟通遷移應(yīng)用·練透課堂練通考點課下提升考能首頁上一頁下一頁末頁結(jié)束數(shù)學第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12
【摘要】微積分基本定理(79)31、變速直線運動問題變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【摘要】微積分初步輔導老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務(wù)《微積分初步》是計算機和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過本課程的學習,使學生對一元函數(shù)微分、積分有初步認識和了解,使學生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學生邏輯推理能力、自學能力,較熟練的運算能力和綜合運用所學知識分析問題、解決問題的能力
2025-01-19 21:35
【摘要】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導數(shù),則有????bababavduuvudv.定積分的分部積分公式推導??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【摘要】首頁末頁上一頁下一頁瞻前顧后演練廣場要點突破典例精析考題賞析2.2數(shù)列的極限二極限首頁末頁上一頁下一頁瞻前顧后演練廣場要點突破典例精析考題賞析首頁末頁上一頁下一頁瞻前顧后演練廣場要點突破典例精析考題賞析
2025-01-19 10:50
【摘要】話說微積分制作人:項晶菁數(shù)學的核心領(lǐng)域是:?代數(shù)學——研究數(shù)的理論;?幾何學——研究形的理論;?分析學——溝通形與數(shù)且涉及極限運算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學
2025-01-20 00:10
【摘要】第五章微積分模型例1:(不允許缺貨的存儲模型)設(shè)某廠生產(chǎn)若干種產(chǎn)品,在輪換生產(chǎn)不同的產(chǎn)品時因更換設(shè)備要付生產(chǎn)準備費(與產(chǎn)品數(shù)量無關(guān)),同一的產(chǎn)量大于需求時因占用倉庫要付存儲費。已知某一產(chǎn)品日需求量為100件,生產(chǎn)準備費5000元,存儲費每件每日1元,若生產(chǎn)能力遠大于需求,并且不允許出現(xiàn)缺貨,試安排該產(chǎn)品的生產(chǎn)計劃,即多少天生產(chǎn)一次(生產(chǎn)周期)
2025-04-29 01:24
【摘要】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17
【摘要】如果先讓烏龜爬行一段路后,再讓劉翔去追,那么劉翔是永遠也追不上烏龜?shù)摹?、談?wù)剟⑾枧c烏龜賽跑的問題理由:劉翔追上烏龜之前,必須先到達烏龜?shù)某霭l(fā)點,而這段時間內(nèi),烏龜又向前爬行了一段路,于是劉翔必須趕上這段路,于是烏龜又向前爬行了一路。。。,如此分析下去,劉翔離烏龜越來越近,但卻是永遠也追不上烏龜。破解悖論
2025-01-04 08:27
【摘要】韓淑霞公共郵箱:,Key:135246私人郵箱:請每個小班的數(shù)學課代表將電話號碼給我電話:153271419031.分析基礎(chǔ):函數(shù),極限,連續(xù)2.微積分學:一元微積分(上冊)(下冊)3.向量代數(shù)與空間解析幾何4.無窮級數(shù)
2025-05-03 23:22