【摘要】高中數(shù)學(xué)輔導(dǎo)網(wǎng)不等式證明方法大全不等式的證明是數(shù)學(xué)證題中的難點(diǎn),其原因是證明無(wú)固定的程序可循,方法多樣,技巧性強(qiáng)。1、比較法(作差法)在比較兩個(gè)實(shí)數(shù)和的大小時(shí),可借助的符號(hào)來(lái)判斷。步驟一般為:作差——變形——判斷(正號(hào)、負(fù)號(hào)、零)。變形時(shí)常用的方法有:配方、通分、因式分解、和差化積、應(yīng)用已知定理、公式等。例1、已知:,,求證:。證明:,故得。2、分析法(逆推法)
2025-07-22 19:40
【摘要】基本不等式1.若,下列不等式恒成立的是 ?。ā 。〢. B. C. D.2.若且,則下列四個(gè)數(shù)中最大的是 ?。ǎ粒 。拢 。茫?ab ?。模產(chǎn)3.設(shè)x0,則的最大值為( ?。粒? ?。拢 。茫 ?/span>
2025-06-23 02:10
【摘要】2022年高考數(shù)學(xué)試題分類匯編——不等式(2022上海文數(shù))的目標(biāo)函數(shù)的最大值是23,0,xy???????zxy??[答]()(A)1.(B).(C)2.(D)解析:當(dāng)直線過(guò)點(diǎn)B(1,1)時(shí),z最大值為2zxy??(2022浙江理數(shù))(7)若實(shí)數(shù),滿足不等式組且的最大值為
2025-06-08 00:21
【摘要】【3年高考2年模擬】第3章不等式第一部分三年高考薈萃高考試題分類解析一、選擇題1.(2020天津文)設(shè)變量,xy滿足約束條件?????????????01042022xyxyx,則目標(biāo)函數(shù)32zxy??的最小值為()A.5?B.4?C.2?D.3
2025-08-11 14:54
【摘要】不等式公式匯總一不等式的證明證明不等式選擇方法的程序:①做差:證明不等式首選不等式,做差的本質(zhì)是因式分解,能否使用做差法取決于做差后能否因式分解;②作比:通過(guò)構(gòu)造同底或同指數(shù)合并作比結(jié)果,再利用指對(duì)數(shù)圖像判斷大于小于1;③用公式:構(gòu)造公式形式;等價(jià)變形:左右兩邊n次方;平方平均≥算術(shù)平均≥幾何平均≥調(diào)和平均(a、b為正數(shù)):(當(dāng)a=b時(shí)取等),,
2025-04-17 13:09
【摘要】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【摘要】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”
2025-07-23 23:59
【摘要】.第九章不等式與不等式組測(cè)試1不等式及其解集學(xué)習(xí)要求:知道不等式的意義;知道不等式的解集的含義;會(huì)在數(shù)軸上表示解集.(一)課堂學(xué)習(xí)檢測(cè)一、填空題:1.用“<”或“>”填空:⑴4______-6;(2)-3______0;(3)-5______-1;(4)6+2______5+2;(5)6+(-2)______5+(-2);(6)6
2025-06-24 19:20
【摘要】第一篇:數(shù)列不等式結(jié)合的題的放縮方法 數(shù)列不等式結(jié)合的題的放縮方法 2011-4-611:51提問(wèn)者:makewest|懸賞分:20|瀏覽次數(shù):559次 2011-4-611:53最佳答案 放...
2024-10-29 04:45
【摘要】Forpersonaluseonlyinstudyandresearch;notformercialuse幾種常見(jiàn)的放縮法證明不等式的方法一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:解:(1)略(2)又,迭乘得:點(diǎn)評(píng):把握“”這一特征對(duì)“”進(jìn)行變形,
2025-07-24 05:50
【摘要】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學(xué)卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學(xué)思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運(yùn)算,利用不等式的傳遞性,其優(yōu)點(diǎn)是能迅速地化繁為簡(jiǎn),化難為易,達(dá)到事半功倍的效
2025-03-24 12:45
【摘要】初一數(shù)學(xué)不等式與不等式組 中考數(shù)學(xué):不等式與不等式組 1不等式的概念、性質(zhì)及解集的表示1、不等式一般地,用符號(hào)“”(或“≥”)以及“≠”連接的式子叫做不等式。能使不等式成立的未知數(shù)的值...
2024-12-03 22:28
【摘要】近年來(lái)在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問(wèn)題和解決問(wèn)題的能力。特別值得一提的是,高考中可以用“放縮法”證明不等式的頻率很高,它是思考不等關(guān)系的樸素思想和基本出發(fā)點(diǎn),?有極大的遷移性,對(duì)它的運(yùn)用往往能體現(xiàn)出創(chuàng)造性?!胺趴s法”它可以和很多知識(shí)內(nèi)容結(jié)合,對(duì)應(yīng)變能力有較高的要求。因?yàn)榉趴s必須有目標(biāo),而且要恰到
2025-04-16 23:50
【摘要】不等式的證明復(fù)習(xí)?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設(shè)要證明的命題不成立,以此為出發(fā)點(diǎn),結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進(jìn)行正確的推理,得到矛盾,說(shuō)明假設(shè)不正確,從而間接說(shuō)明原命題成立的方法。1.xy02.1x12.yxy
2025-08-01 17:41
【摘要】函數(shù)法根據(jù)所給不等式的特征,利用函數(shù)的性質(zhì)及函數(shù)圖象來(lái)證明不等式成立的方法,稱之為函數(shù)法。荊州師范學(xué)院張軍濤教學(xué)目標(biāo)重點(diǎn)掌握函數(shù)的單調(diào)
2024-11-19 02:58