【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第十三講求導(dǎo)法則一.基本初等函數(shù)的導(dǎo)數(shù)推導(dǎo)一些基本公式?。?.y=Cx?R(C為常數(shù))Q??????xyx0lim?????xC
2025-01-19 16:29
【摘要】復(fù)合函數(shù)的求導(dǎo)法則在學(xué)習(xí)此法則之前我們先來看一個例子!例題:求=?解答:由于,故這個解答正確嗎?這個解答是錯誤的,正確的解答應(yīng)該如下:我們發(fā)生錯誤的原因是是對自變量x求導(dǎo),而不是對2x求導(dǎo)。下面我們給出復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)規(guī)則
2025-08-13 13:15
【摘要】§簡單復(fù)合函數(shù)的求導(dǎo)法則學(xué)習(xí)目標思維脈絡(luò)1.能說出復(fù)合函數(shù)的概念,記住復(fù)合函數(shù)的求導(dǎo)法則.2.會運用復(fù)合函數(shù)求導(dǎo)法則求一些復(fù)合函數(shù)的導(dǎo)數(shù).3.能把一個復(fù)合函數(shù)分成兩個或幾個簡單函數(shù)的和、差、積、商的形式.4.要明確復(fù)合函數(shù)y=f[g(x)]的導(dǎo)數(shù)和函數(shù)y=f(u),
2024-11-18 13:32
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-03 19:25
【摘要】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復(fù)習(xí)復(fù)合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復(fù)合函數(shù)可分解為:y
2025-05-14 23:10
【摘要】世紀文都教育科技集團股份有限公司2018考研數(shù)學(xué)中反函數(shù)求導(dǎo)問題來源:文都教育春風(fēng)十里,不如考研的你,2018考研備考正在如火如荼地進行著,18的考生們的復(fù)習(xí)也漸漸步入正軌!今天文都考研數(shù)學(xué)老師針對2018考研數(shù)學(xué)中反函數(shù)求導(dǎo)問題,為大家進行詳細的解答,幫助2018年的考研學(xué)子把握復(fù)習(xí)備考的命題方向!一、反函數(shù)的導(dǎo)數(shù)
2025-06-07 22:26
【摘要】為常數(shù))????(x)x)(1(1'??1)a0,lna(aa)a)(2(x'x???且1)a,0a(xlna1elogx1)xlog)(3(a'a????且sinx(7)(cosx)'??e)e)(4(x'x?x
2024-10-11 20:05
【摘要】第四節(jié)一、隱函數(shù)求導(dǎo)法三、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)五、相關(guān)變化率隱函數(shù)的求導(dǎo)法和參數(shù)方程確定的函數(shù)求導(dǎo)法第二章二、對數(shù)求導(dǎo)法四、由極坐標確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)定義:.)(形式稱為顯函數(shù)xfy?若由方程可確定y是x的函數(shù),此函數(shù)為由方程則稱
2025-07-25 09:35
【摘要】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對x求導(dǎo)再解出,y?但應(yīng)注意F對變元y求導(dǎo)時,要利用復(fù)合求導(dǎo)法則.2.對數(shù)求導(dǎo)法當函數(shù)式較復(fù)雜(含乘、除、乘方、開方、冪指函數(shù)等)時,在方程兩邊取對數(shù),按隱函數(shù)的求
2025-07-24 04:24
【摘要】西南民族大學(xué)經(jīng)濟學(xué)院毛瑞華微積分(2021~2021下)1§多元復(fù)合函數(shù)與隱函數(shù)微分法一、多元復(fù)合函數(shù)微分法定理設(shè)z=f(u,v)在(u,v)處可微,u=u(x,y),v=v(x,y)在(x,y)處的偏導(dǎo)數(shù)存在,則復(fù)合函數(shù)z=f[u(x,y),v(x,y)]在(x,y)處的偏導(dǎo)數(shù)
2024-10-19 14:52
【摘要】多元復(fù)合函數(shù)的求導(dǎo)法在一元函數(shù)中,我們已經(jīng)知道,復(fù)合函數(shù)的求導(dǎo)公式在求導(dǎo)法中所起的重要作用,對于多元函數(shù)來說也是如此。下面我們來學(xué)習(xí)多元函數(shù)的復(fù)合函數(shù)的求導(dǎo)公式。我們先以二元函數(shù)為例:多元復(fù)合函數(shù)的求導(dǎo)公式鏈導(dǎo)公式:設(shè)均在(x,y)處可導(dǎo),函數(shù)z=F(u,v)在對應(yīng)的(u,v)處有連續(xù)的一階偏導(dǎo)數(shù),那末
2025-08-12 17:21
【摘要】三角函數(shù)的求導(dǎo)公式是什么?[數(shù)學(xué)作業(yè)]收藏轉(zhuǎn)發(fā)至天涯微博懸賞點數(shù)109個回答crystalzjyu2009-03-2814:18:39三角函數(shù)的求導(dǎo)公式是什么?回答回答skoou2009-03-2814:18:48(sinX)(loga
2025-05-16 07:45
【摘要】§5簡單復(fù)合函數(shù)的求導(dǎo)法則雙基達標?限時20分鐘?1.已知f(x)=ln(2x),則f′(x)().A.12xC.1x·ln22x解析f(x)=ln(2x)由f(u)=lnu和u=2x復(fù)合而成.答案B2.設(shè)f(x)=x3,則f(a-bx)的
2024-12-03 00:14
【摘要】§反函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)的求導(dǎo)法則一、反函數(shù)的導(dǎo)數(shù)設(shè)是直接函數(shù),是它的反函數(shù),假定在內(nèi)單調(diào)、可導(dǎo),而且,則反函數(shù)在間內(nèi)也是單調(diào)、可導(dǎo)的,而且(1)證明:,給以增量由在上的單調(diào)性可知于是 因直接函數(shù)在上單調(diào)、可導(dǎo),故它是連續(xù)的,且反函數(shù)在上也是連續(xù)的,
2025-06-24 03:46
【摘要】§隱函數(shù)與參量函數(shù)微分法一、隱函數(shù)的導(dǎo)數(shù)定義:由方程F(x,y)=0所確定的函數(shù)y=y(x)稱為隱函數(shù).y=f(x)形式的函數(shù)稱為顯函數(shù).如果從F(x,y)=0中解得y=f(x),稱為隱函數(shù)的顯化.問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?例1:求由方程xy–e
2025-07-24 17:10