【正文】
ain processes information. In other words, artificial neural works are collections of mathematical models that emulate some of the observed properties of biological nervous systems and draw on the analogies of adaptive biological learning. The key element of the ANN paradigm is the novel structure of the information processing system. It is posed of a large number of highly interconnected processing elements that are analogous to ncurons and are together with weighted connections that are analogous to model is advantage to search a suitable forecasting model for inventory. There are multitudes of different types of ANNs, and BP Neural Network is a multilayers back propagation neural work, which is trained with the backpropagation of error algorithm. According to the simple structure and the considerable application, BPNN is the most popular ANN at the present. (2)The basics of multilayers BPNN BPNN is typically organized in layers. Layers are made up of a number of interconnected 39。 φ(ξ):The probability density function of ξ. In order to minimize the value of E[T(y)],namely, this must have .Following the method of derivation formulation which obtains parameter argument, we will get 。 p :The punishment cost for shorts of per product。Biophysical implications. So ANN is a good analysis tool for nonlinear problem. This paper will put forward to improve traditional inventory models with the aid of multi layer BP neural work so as to acquire much more satisfactory optimum tactics of inventory. LIMITATION TRADITIONAL INVENTORY OPTIMUM MODEL Before the strategic alliance relationship among the upstream and downstream enterprises es into being, there is only a single material flow. The operational mechanics is shown below: Under the operational mechanies of traditional supply chain(as show in figurel), making inventory optimurn models。Great degree of robustness and fault tolerance。另外我們知道,神經(jīng)網(wǎng)絡(luò)善于解決一些沒有解決辦法或其中一個(gè)解決方案的算法太復(fù)雜而無法找到的問題。該模型的結(jié)構(gòu)如下所示: 在一些采樣數(shù)據(jù)里,我們可以選擇一個(gè)合適的傳遞函數(shù)并且培訓(xùn)這種模式。隨即變量首先要求選擇的因素必須符合在隨機(jī)變量的基礎(chǔ)上制作 BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型,然后,我們也將考慮到定量的可行性。另一方面,因?yàn)檫@些企業(yè)雙贏 的關(guān)系, 屬于一個(gè)具體供應(yīng)鏈 的 企業(yè)可以分享一些重要的信息 。時(shí)代 39。雖然有許多不同類型的學(xué)習(xí)規(guī)則,但三角洲規(guī)則是 BP神經(jīng)網(wǎng)絡(luò)用的最常見的學(xué)習(xí)規(guī)則。模式通過“輸入層”提交給網(wǎng)絡(luò),“輸入層”通過一個(gè)系統(tǒng)連接的加權(quán)對一個(gè)或更多的隱藏層進(jìn)行實(shí)際加工。激活功能 39。 有眾多不同類型的人工神經(jīng)網(wǎng)絡(luò)和 BP 神經(jīng)網(wǎng)絡(luò),這是進(jìn)行了反向誤差算法的訓(xùn)練。換言之,人工神經(jīng)網(wǎng)絡(luò)的集合的數(shù)學(xué)模型,模擬的一些觀測特性的生物神經(jīng)系統(tǒng),并利用類比的自適應(yīng)生物學(xué)習(xí)。隨著 IT和物流技術(shù)的發(fā)展,基于內(nèi)聯(lián)網(wǎng) \聯(lián)網(wǎng),互聯(lián)網(wǎng)和電子數(shù)據(jù)交換技術(shù),企 業(yè)可能有能力實(shí)現(xiàn)翻譯。從上述分析我們知道影響隨機(jī)變量的因素是多變量非線性關(guān)系;如:產(chǎn)品的價(jià)格,銷售季節(jié)的變化 , 內(nèi)部收益率的總和。 為了盡量減少價(jià)值期望的總費(fèi)用清單的價(jià)值,即:使價(jià)值期望的總費(fèi)用清單最小,必須使。本文將提出在多層次的BP神經(jīng)網(wǎng)絡(luò)的幫助下 , 來改進(jìn)傳統(tǒng)的 庫存模型以獲得更令人滿意的優(yōu)化庫存。 人工神經(jīng)網(wǎng)絡(luò)本身的自我學(xué)習(xí)和多映射的能力,可以探索復(fù)雜系統(tǒng),使復(fù)雜的模型簡單化。所有這些模式在供應(yīng)鏈管理的思想應(yīng)運(yùn)而生之前已經(jīng)取得了,但這些模型沒有考慮上游 和下游企業(yè)。成功的供應(yīng)鏈管理需要有一個(gè)一體化的系列活動(dòng)納入一個(gè)緊密無間的過程。并依據(jù)某一鋼材現(xiàn)貨公司的庫存情況給出具體的應(yīng)用。本文分析了傳統(tǒng)企業(yè)庫存優(yōu)化與供應(yīng)鏈管理環(huán)境下庫存優(yōu)化的運(yùn)作機(jī)理,提出在供應(yīng)鏈管理環(huán)境下可以借助多層 BP 神經(jīng)網(wǎng)絡(luò)改進(jìn)傳統(tǒng)庫存模型,以得到更為滿意地最優(yōu)庫存策略。供應(yīng)鏈管理的想法是采用整體的方法來管理整個(gè)信息流,材料和來自于原材料供應(yīng)商的服務(wù)通過工廠和倉庫直到最終的客戶。國內(nèi)外專家在庫存優(yōu)化領(lǐng)域已取得了很大的研究,做了許多庫存優(yōu)化的模型。 另一方面,影響存貨清單的各因素之間的關(guān)系是非線性的,因此很難作出一個(gè)定量和明確的數(shù)