【正文】
pective Alim Louis Benabid and Wieslaw Nowinski INTRODUCTION Since its inception, neurosurgery has continually distinguished itself as the most innovative field among surgical specialties, possibly secondary to the inherently innovative nature of the organ system it serves. Driven by changes in patient needs, technological advances, and significant progress in our understanding of the neurosciences, neurosurgery has maintained an everchanging face to the extent that, at times, even those within the field find it difficult to recognize. As with rapid change in any aspect of life, a wide array of attitudes are elicited. Denial of progress, and tenacity toward that which is familiar, is certainly the safest, easiest response and, rhinencephalically speaking, may be the most physiological attitude manifested. Arising from the temporal lobe, disbelief and disorientation are also frequently encountered responses to change. These attitudes, however, are often overe through the acquisition of knowledge and experience. The frontal lobes are responsible for balancing inhibition with disinhibition. They serve as the source of curiosity housing the motor cortex necessary to engage in exploratory behavior, the planning areas to evaluate riskbearing trials, and the sanctuary for plex decision making. Because of the frontal lobes, we move forward down a path toward invention, trial, and ultimately, final design. The history of surgical tools follows a similar path and is far from being perfected. The introduction of novel tools into the operating room through the form of puter informatics, online radiology review, and intraoperative imaging has revolutionized both the design and the ambience of the operating room. This, however, is only the beginning. Progress is more than the simple acquisition of vast amounts of highly sophisticated equipment and the teams of specialists required to operate it. The entire concept has to be rethought to truly achieve a higher level of structure. The overwhelming amount of information now available to the neurosurgeon must be seamlessly integrated and coupled with intraoperative machinery capable of exchanging information in a fashion that assists neurosurgeons and their staff in delivering their skills faster, safer, and more accurately than that attainable by human cognition alone. It is conceivable that such a system might foresee and organize the series of events, perform all necessary calculations, carry out the necessary preparations and decision making, and ultimately assist the surgeon in executing the task. Although manual assistance of surgical gestures was originally the sole task of robots, in this light a much greater benefit may be attainable for intraoperative robotics. If the robot fails to bee a permanent tool in the neurosurgical armamentarium, so be it。我們還必須付出更多的努力來解決有關(guān)軟件的兼容,圖像的配準(zhǔn),軟件策劃系統(tǒng)以及各種有效輔助系統(tǒng)的應(yīng) 用問題。這些問題不僅僅只存在于健康醫(yī)療領(lǐng)域,普遍存在于各行各業(yè),而醫(yī)療領(lǐng)域人們已經(jīng)受益非淺,但也提出了 精確手術(shù)的新要求。 放射外科手術(shù) CYBERKNIFE 機器人系統(tǒng)可以通過線性加 速裝置進(jìn)行 6 自由度的精確定位。 RAMS 系統(tǒng)可以按比例縮減外科醫(yī)生手 部運動的參數(shù)并能消除手部本身的生理顫抖,結(jié)果是單純的人工操作進(jìn)行手術(shù)遠(yuǎn)不如由操縱系統(tǒng)進(jìn)行手術(shù)工具的精確定位所達(dá)到的效果。機器人技術(shù)在整形手術(shù)中得到了很好的發(fā)揮,有超過 900 個成功手術(shù)案例是 ROBODOC 的杰作, ROBOTRACK 系統(tǒng)也有超過 200 的成功案例。 整形外科 機器人技術(shù)在整形外科手術(shù)中得到廣泛使用,典型的有 ROBOTRACCK系統(tǒng)、 GRIGOS系統(tǒng)以及 ROBODOC 系統(tǒng)。以腸腔鏡為基礎(chǔ)工具進(jìn)行前列腺疾病的治療,是其前列腺手術(shù)的一個技術(shù)革新。據(jù)報道 :機器人輔助技術(shù)與腹腔鏡的以及結(jié)合,已經(jīng)應(yīng)用于膽囊切除術(shù)、冗余組織切除,胃部檢查、結(jié)腸切除術(shù)。抓緊力要適當(dāng)以免物體的滑落,而且要輕柔,力度適當(dāng)以免損壞物體,簡直就像是握著一個裝滿水的輕塑料杯子。 力度控制 在進(jìn)行腦部手術(shù)的時候,力度控制顯得十分重要。計算機位置控制系統(tǒng) ZEUS 是外科手術(shù)更加靈活,精確,是外科醫(yī)生在手術(shù)過程中能在自然舒服的手術(shù)操作環(huán)境中進(jìn)行工作,大大提高了手術(shù)的效率。目前,此項技術(shù)只運用于動物醫(yī)學(xué),但要將此項技術(shù)轉(zhuǎn)移到手術(shù)室里對人進(jìn)行手術(shù),只有在機器人的協(xié)助下才能達(dá)到如此高的精度。 AESOP 系統(tǒng)利用語音識別系統(tǒng)控制 機器人進(jìn)行操作,而且能由簡單的口頭語音命令來實現(xiàn)手術(shù)工具的精確定位和連續(xù)移動。 手術(shù)工具的配備和移動 如牽開器的輔助,光學(xué)攝像頭的定位以及抽吸裝置的控制等煩瑣的工作都可以實現(xiàn)自動化。用于手術(shù)工具定位的機器人系統(tǒng)典型的有 NEUROMATE, MINERVA 和 IMARL 系統(tǒng)。當(dāng)運用機器人技術(shù)進(jìn)行輔助作業(yè)的時候,首先考慮到的問題是安全性、準(zhǔn)確性、和效果以及與手術(shù)環(huán)境的統(tǒng)一問題,還應(yīng)具備額外的益處(如減少手術(shù)操作時間, 減少手術(shù)創(chuàng)傷,提高臨床成功率),因此我們可以看出機器人技術(shù)輔助作業(yè)可以運用的領(lǐng)域是危險任務(wù)的執(zhí)行和外科手術(shù)領(lǐng)域。與以往不同,現(xiàn)在我們必須把考慮的中心從重器械的模式轉(zhuǎn)移到重針對性上來,機器人技術(shù)革新不應(yīng)該以純粹的為了制造出性能好的機器而發(fā)展的態(tài)度為目的。人與機器之間的關(guān)系是相輔相成的,彼此之間都是取長補短的,但究竟是人類和機器人哪個更加優(yōu)越一些引起了疑問,這是必然的!人類的優(yōu)越性在與靈活、適應(yīng)性強、有自主的判斷能力、以及手部和眼睛可以協(xié)調(diào)一致;而缺點在于容易疲勞、記憶存儲有限、而且不具備同時處理大量數(shù)據(jù)信息的能力,手部容易顫抖,情緒易受影響等。經(jīng)過 5 億年的物種演化和 500 萬年社會變革,人類文明的產(chǎn)物之一,在 Wesbter 的字典里被解釋為“一種能代替人類工作的機械裝置”的這種工具 —— 機器人,它的發(fā)明是人類歷史發(fā)展過程中的又一個里程碑;它與同人類文明歷史中的其他重大發(fā)明如印刷術(shù)、內(nèi)燃機、微處理器、空間技術(shù)、神經(jīng)刺激原理、以及人類基因圖譜具有同等歷史意 義。 在 500 年前,當(dāng) Leonardo Da Vinci 第一次在他自己的 Chambord 城堡里建造出獨特的具有雙螺旋結(jié)構(gòu)式的樓梯的時候,沒有人會意識到就是這種獨特的雙螺旋結(jié)構(gòu)將對人類文明的發(fā)展起了重大影響。通過神經(jīng)外科學(xué)的大量知識理論基礎(chǔ)與內(nèi)窺鏡反饋技術(shù)的綜合應(yīng)用,使外科醫(yī)生及其工作人員能更快、更安全、更精確的實施手術(shù),比起僅僅靠人的感性認(rèn)識有過之而無不及。因此說,由于額葉的作用,使我們每個人都經(jīng)歷了從創(chuàng)造,實驗到最后下結(jié)論的整個思考過程。時代在進(jìn)步,隨之患者的要求也提高了,再加之技術(shù)的革新和我們在神經(jīng)科學(xué)領(lǐng)域的認(rèn)識過程中有了重大進(jìn)展,使神經(jīng)外科學(xué)的內(nèi)容不斷的被更新和豐富,竟然到了讓多年來一直從事這方面研究的專家也無法家全了解的地步。中文 5629 字 畢業(yè)設(shè)計 (論文 )外文資料翻譯