【摘要】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點(diǎn)、程序
2024-11-19 20:38
【摘要】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題?!局R梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實(shí)數(shù)使//ab?;反之,存在唯一實(shí)數(shù)?。使//
2024-11-30 13:46
【摘要】第一篇:平面向量的數(shù)量積教案 、模、夾角 教學(xué)目標(biāo): 1、知識目標(biāo):推導(dǎo)并掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會利用數(shù)量積求解向量的模、、能力目標(biāo):通過自主互助探究式學(xué)習(xí),培養(yǎng)學(xué)生的自學(xué)能力,啟發(fā)學(xué)...
2025-10-12 00:49
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點(diǎn)都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】平面向量的數(shù)量積一、知識梳理:?1、平面向量的數(shù)量積?(1)a與b的夾角:?(2)向量夾角的范圍:?(3)向量垂直:[00,1800]abθ共同的起點(diǎn)aOABbθOABOABOABOAB
2024-11-10 03:15
【摘要】平面向量的數(shù)量積1、向量的夾角ababOAB??18000???????或30當(dāng)時,則稱a與b互相垂直,記作a⊥b.2???10當(dāng)時,則稱a與b同向.0??20當(dāng)時,則稱a與b反向.???注:
2024-11-23 12:04
【摘要】《平面向量數(shù)量積的物理背景及其含義》教學(xué)目標(biāo)?;?;?;?.?教學(xué)重點(diǎn):平面向量的數(shù)量積定義?教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用問題1:我們研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?一探究?問題2:我們是怎
2024-11-23 11:29
【摘要】復(fù)習(xí)例題講解小結(jié)回顧引入新課講解性質(zhì)講解課堂練習(xí)一般地,實(shí)數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時,λa的方向與a方向相同;當(dāng)λ0時,λa
2025-10-10 17:18
【摘要】§數(shù)量積的性質(zhì)1.向量的數(shù)量積的定義是什么?一、復(fù)習(xí)鞏固2.?ab?向量數(shù)量積的幾何意義是什么cosabab???數(shù)量積定義cosabaabab??數(shù)量積等于的長度與在方向上的投影的乘積.
2025-10-10 17:16
【摘要】平面向量的數(shù)量積的性質(zhì)【問題導(dǎo)思】 已知兩個非零向量a,b,θ為a與b的夾角.·b=0,則a與b有什么關(guān)系?【提示】 a·b=0,a≠0,b≠0,∴cosθ=0,θ=90°,a⊥b.·a等于什么?【提示】 |a|·|a|cos0°=|a|2.(1)如果e是單位向量,則a·e=e·
2025-06-25 15:19
【摘要】2.4向量的數(shù)量積前面我們學(xué)習(xí)過向量的加減法,實(shí)數(shù)與向量的乘法,知道a+b,a-b,λa(λ∈R)仍是向量,大家自然要問:兩個向量是否可以相乘?相乘后的結(jié)果是什么?是向量還是數(shù)?1.已知兩個非零向量a與b,它們的夾角為θ,我們把數(shù)量________叫做a與b的數(shù)量積,記作__________
2024-12-05 10:15
【摘要】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-09 03:12
【摘要】“平面向量”誤區(qū)警示“平面向量”概念繁多容易混淆,對于初學(xué)者更是一頭霧水.現(xiàn)將與平面向量基本概念相關(guān)的誤區(qū)整理如下.⑴向量就是有向線段解析:向量常用一條有向線段來表示,有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.有向線段是向量的一種表示方法,不能說向量就是有向線段.⑵若向量與相等,則有向線段AB與CD重合解析:長度相等且方向相同的向量叫做相等向量.因此,
2025-04-16 23:21
【摘要】說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評價(jià)設(shè)計(jì)六個方面對本節(jié)課的思考進(jìn)行說明。一、背景分析1、學(xué)習(xí)任務(wù)分析平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個重要概念
2025-04-16 12:12
【摘要】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會根據(jù)向量的坐標(biāo),判斷向量是否共線. 【重點(diǎn)難點(diǎn)】 教學(xué)重點(diǎn)...
2025-04-03 01:19