【摘要】平面向量共線的坐標表示學習目標:1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【摘要】§2.平面向量共線的坐標表示【學習目標、細解考綱】1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題。【知識梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實數(shù)使//ab?;反之,存在唯一實數(shù)?。使//
2024-11-30 13:46
【摘要】第一篇:平面向量的數(shù)量積教案 、模、夾角 教學目標: 1、知識目標:推導并掌握平面向量數(shù)量積的坐標表達式,會利用數(shù)量積求解向量的模、、能力目標:通過自主互助探究式學習,培養(yǎng)學生的自學能力,啟發(fā)學...
2025-10-12 00:49
【摘要】2.平面向量的坐標運算情景:我們知道,在直角坐標平面內,每一個點都可用一對有序實數(shù)(即它的坐標)表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標,應如何進行運算?1.兩個向量和的坐標等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】平面向量的數(shù)量積一、知識梳理:?1、平面向量的數(shù)量積?(1)a與b的夾角:?(2)向量夾角的范圍:?(3)向量垂直:[00,1800]abθ共同的起點aOABbθOABOABOABOAB
2024-11-10 03:15
【摘要】平面向量的數(shù)量積1、向量的夾角ababOAB??18000???????或30當時,則稱a與b互相垂直,記作a⊥b.2???10當時,則稱a與b同向.0??20當時,則稱a與b反向.???注:
2024-11-23 12:04
【摘要】《平面向量數(shù)量積的物理背景及其含義》教學目標?;?;?;?.?教學重點:平面向量的數(shù)量積定義?教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用問題1:我們研究了向量的哪些運算?這些運算的結果是什么?一探究?問題2:我們是怎
2024-11-23 11:29
【摘要】復習例題講解小結回顧引入新課講解性質講解課堂練習一般地,實數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa
2025-10-10 17:18
【摘要】§數(shù)量積的性質1.向量的數(shù)量積的定義是什么?一、復習鞏固2.?ab?向量數(shù)量積的幾何意義是什么cosabab???數(shù)量積定義cosabaabab??數(shù)量積等于的長度與在方向上的投影的乘積.
2025-10-10 17:16
【摘要】平面向量的數(shù)量積的性質【問題導思】 已知兩個非零向量a,b,θ為a與b的夾角.·b=0,則a與b有什么關系?【提示】 a·b=0,a≠0,b≠0,∴cosθ=0,θ=90°,a⊥b.·a等于什么?【提示】 |a|·|a|cos0°=|a|2.(1)如果e是單位向量,則a·e=e·
2025-06-25 15:19
【摘要】2.4向量的數(shù)量積前面我們學習過向量的加減法,實數(shù)與向量的乘法,知道a+b,a-b,λa(λ∈R)仍是向量,大家自然要問:兩個向量是否可以相乘?相乘后的結果是什么?是向量還是數(shù)?1.已知兩個非零向量a與b,它們的夾角為θ,我們把數(shù)量________叫做a與b的數(shù)量積,記作__________
2024-12-05 10:15
【摘要】空間向量運算的坐標表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2024-11-09 03:12
【摘要】“平面向量”誤區(qū)警示“平面向量”概念繁多容易混淆,對于初學者更是一頭霧水.現(xiàn)將與平面向量基本概念相關的誤區(qū)整理如下.⑴向量就是有向線段解析:向量常用一條有向線段來表示,有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.有向線段是向量的一種表示方法,不能說向量就是有向線段.⑵若向量與相等,則有向線段AB與CD重合解析:長度相等且方向相同的向量叫做相等向量.因此,
2025-04-16 23:21
【摘要】說課內容:普通高中課程標準實驗教科書(人教A版)《數(shù)學必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節(jié)課的思考進行說明。一、背景分析1、學習任務分析平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學的一個重要概念
2025-04-16 12:12
【摘要】 《平面向量正交分解及坐標表示》導學案 【學習目標】 (1)理解平面向量的坐標的概念; (2)掌握平面向量的坐標運算; (3)會根據(jù)向量的坐標,判斷向量是否共線. 【重點難點】 教學重點...
2025-04-03 01:19