freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題精選含答案(7)-全文預(yù)覽

2025-04-02 03:32 上一頁面

下一頁面
  

【正文】 本題考查了平行四邊形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)等,熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.12.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點D在直線BC上,分兩種情況討論:當點D在線段BC上時,如圖所示,在Rt△ADB中,則;②當點D在BC延長線上時,如圖所示,在Rt△ADB中,則.故答案為:A.【點睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.13.A解析:A【解析】分析:將△BPC繞點B逆時針旋轉(zhuǎn)60176?!帱cE在直線BE上運動,過點C作CH⊥BE于點H,則點H即為使得BE最小時的E點的位置,∠CBH=180176?!螦BC=60176。 C.45176。AB=6,AC=8,現(xiàn)將Rt△ABC沿BD進行翻折,使點A剛好落在BC上,則CD的長為(若正方形A、B、C、D的邊長是3,則最大正方形E的面積是A.13 B.2 C.47 D.10.如圖,長方體的長為15cm,寬為10cm,高為20cm,點B離點C5cm,一只螞蟻如果要沿著長方體的表面從點A爬到點B去吃一滴蜜糖,需要爬行的最短距離是( ?。ヽm.A.25 B.20 C.24 D.1011.如圖,在平行四邊形ABCD中,∠DBC=45176。最新八年級數(shù)學試卷易錯易錯壓軸選擇題精選:勾股定理選擇題精選含答案(7)一、易錯易錯壓軸選擇題精選:勾股定理選擇題1.下列四組數(shù)據(jù)不能作為直角三角形的三邊長的是 (   )A.6,8,10 B.5,12,13 C.3,5,6 D.,2.如圖,小紅想用一條彩帶纏繞易拉罐,正好從A點繞到正上方B點共四圈,已知易拉罐底面周長是12 cm,高是20 cm,那么所需彩帶最短的是(  )A.13 cm B.4cm C.4cm D.52 cm3.如圖,在△ABC中,∠A=90176。BC=5,AC=,CB的反向延長線上有一動點D,以AD為邊在右側(cè)作等邊三角形,連CE,CE最短長為( )A. B. C. D.7.在△ABC中,∠BCA=90°,AC=6,BC=8,D是AB的中點,將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于( )A.5 B. C. D.8.如圖,在中,與的平分線交于點,過點作于點,若則的長為( )A. B.2 C. D.49.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形。AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為2,l2,l3之間的距離為3,則AC的長是(  )A. B. C.4 D.724.如圖,是一張直角三角形的紙片,兩直角邊,現(xiàn)將折疊,使點B點A重合,折痕為DE,則BD的長為( )A.7 B. C.6 D.25.如圖,在Rt△ABC中,∠A=90176。 B.30176。因此點E的軌跡是一條直線,過點C作CH⊥BE,則點H即為使得BE最小時的E點的位置,然后根據(jù)直角三角形的性質(zhì)和勾股定理即可得出答案.【詳解】解:在CB的反向延長線上取一點B’,使得BC=B’C,連接AB’,∵∠ACB=90176。AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60176。∴BH=BC=,∴CH==.即BE的最小值是.故選C.【點睛】本題是一道動點問題,綜合考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì)和勾股定理等知識,將△ACB構(gòu)造成等邊三角形,通過全等證出∠ABC是定值,即點E的運動軌跡是直線是解決此題的關(guān)鍵.7.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(1802∠EDC)=90∠EDC,∴∠DEB= 90∠EDH=90(90∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設(shè)DG=x,則CG=5x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點睛】此題考查翻折的性質(zhì),勾股定理,等腰三角形的性質(zhì),將求BE轉(zhuǎn)換為求其一半的長度的想法是關(guān)鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長度.8.B解析:B【分析】過點O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質(zhì)得到OD=OE=OF,根據(jù)勾股定理求出BC的長,易得四邊形ADFO為正方形,根據(jù)線
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1