freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

九年級數(shù)學(xué)下冊學(xué)案(文件)

2025-08-25 19:51 上一頁面

下一頁面
 

【正文】 坐標是( 1, 6),并且圖像經(jīng)過點( 2,3),求這個函數(shù)的解析式。 確定二次函數(shù)的解析式 主備: 樓德一中 李圣梅 審核:李波 一、學(xué)習(xí)目標: 通過確定二次函數(shù)表達式的過程,體會求二次函數(shù)表達式的思想方法,培 養(yǎng)數(shù)學(xué)應(yīng)用意識。 32 ( 1) y=2x2― 12x+13 ( 3) y=2( x― 21 )( x― 2) 三、典型例題 橋梁的兩條鋼纜具有相同的拋物線形狀,始圖所示,按照圖中的直角坐標第,左面的一條拋物線可以用 y=++10 表示,而且左、右兩 邊的拋物線關(guān)于 y軸對稱。 學(xué)習(xí)過程: 一、 引出例題,得出公式 。 五、達標檢測: 拋物線 y=( x— l) 2 +2 的對稱軸是( ) A.直線 x=- 1 B.直線 x=1 C.直線 x=2 D.直線 x=2 已知拋物線的解析式為 y=-( x— 2) 2+ l,則拋物線的頂點坐標是( ) A.(- 2, 1) B.( 2, l) C.( 2,- 1) D.( 1, 2) 將拋物線 y=2(x1)2+3 向左平移 1 個單位,再向下平移 3個單位,則所得拋物線解析式為 ___ ___. 要從拋物線 y=2x2的圖象得到 y=2x21的圖象,則拋物線 y=2x2必須 [ ] A.向上平移 1個單位; B.向下平移 1個單位; C.向左平移 1個單位; D.向右平移 1個單位. 將拋物線 y=3x2的圖象向右平移 1 個單位,再向下平移兩個單位后,則所得拋物線解析式為 [ ] A. y=3(x1)22; B. y=3(x1)2+2; C. y=3(x+1)22; D. y=3(x+1)2+2. 要從拋物線 y=2x2得到 y=2(x1)2+3 的圖象,則拋物線 y=2x2必須 [ ] A.向左平移 1個單位,再向下平移 3 個單位; B.向左平移 1個單位,再向上平移 3 個單位; C.向右平移 1個單位,再向下平移 3 個單位 D.向右平移 1個單位,再向上平移 3 個單位. 31 拋物線 232yx??向左平移 1 個單位得到拋物線( ) A. 23 12yx?? ?B. 23 12yx?? ?C. 23 ( 1)2yx?? ?D. 把二次函數(shù) 2xy ?? 的圖象先向右平移 2個單位,再向上平移 5個單位后得到一個新圖象,則新圖象所表示的二次函數(shù)的解析式是 ( ) A. ? ? 52 2 ???? xy B. ? ? 52 2 ???? xy C. ? ? 52 2 ???? xy D. ? ? 52 2 ???? xy 6 二次函數(shù) y=ax2+bx+c 的圖像( 3) 主備人:翟鎮(zhèn)初級中學(xué) 肖 麗 審核:李波 教師寄 語 :乘風(fēng)破浪會有時,直掛云帆穿題海。 填寫下表: 表一: 拋物線 開口方向 對稱軸 頂點坐標 表二: 拋物線 開口方向 對稱軸 頂點坐標 四、達標檢測 : 1.拋物線 y=- 4x2- 4 的開口向 ,當 x= 時, y有最 值,y= . 2.當 m= 時, y=( m- 1) x mm?2 - 3m是關(guān)于 x的二次函數(shù). 3.當 m= 時,拋物線 y=( m+ 1) x mm?2 + 9 開口向下,對稱軸是 .在對稱軸左側(cè), y隨 x的增大而 ;在對稱軸右側(cè), y 隨 x的增大而 . 二次函數(shù) y=ax2 與一次函數(shù) y=ax+ a 在同一坐標系中的圖象大致為( ) 28 6 二次函數(shù) y=ax2+bx+c 的圖像( 2) 主備人:翟鎮(zhèn)初級中學(xué) 肖 麗 審核:李波 學(xué)習(xí)目標 : 1.會用描點法畫出二次函數(shù) 的圖像; 2.知道拋物線 的對稱軸與頂點坐標; 學(xué)習(xí)重點 : 會畫形如 的二次函數(shù)的圖像,并能指出圖像的開口方向、對稱軸及頂點坐標。 學(xué)習(xí)重點 : 畫出形如 與形如 的二次函數(shù)的圖象,能指出上述函數(shù)圖象的開口方向,對稱軸,頂點坐標 . 學(xué)習(xí)難點 : 理解函數(shù) 、 與 及其圖象間的相互關(guān)系 學(xué)習(xí)過程 : 一、復(fù)習(xí)引入 提問: 1.什么是二次函數(shù)? 2.形如 的二次函數(shù)的開口方向,對稱軸,頂點坐標各是什么? 二、新知探索 (一)自己動手,獲取真知。 二、 合作交流 : 認真閱讀 P27――― P28 頁“實驗與探究”,并按要求完成課本上的問題。 ( 2)右邊含自變量的代數(shù)式是否為 。 1 青島版數(shù)學(xué)九年級(下)學(xué)案 第 5 章 對函數(shù)的再探索 函數(shù)與它的表示法(第 1 課時) (主備 :張芹 審核:李波) 【 學(xué)習(xí)目標 】 1. 回顧函數(shù)的概念,掌握函數(shù)的三種表示方法:解析法 . 列表法 . 圖像法. 2. 能夠恰當?shù)剡\用函數(shù)的三種表示方法解決一些實際問題,初步培養(yǎng)將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力. 【 學(xué)習(xí)過程 】 一 . 自主學(xué)習(xí) 1. 完成教材第 4 頁的觀察與思考題 . 2. 用來表達函數(shù)關(guān)系的數(shù)學(xué)式子叫做 ______________或 _____________.用數(shù)學(xué)式子表示函數(shù)的方法叫做 ___________.用表格表示函數(shù)關(guān)系的方法,叫做 __________.用圖象表示函數(shù)關(guān)系的方法,叫做 _____________. 二 . 合作探究 1. 你能分別舉出用三種方法表示函數(shù)的例子嗎? 2. 你認為用解析法 . 列表法和圖像法表示函數(shù)關(guān)系各有哪些優(yōu)點和不足? 3. 用描點法畫函數(shù)圖象時用到了函數(shù)關(guān)系的哪幾種表示方法? 三 . 鞏固練習(xí) 1. 一輛汽車在行駛中,速度 v 隨時間 t 變化的情況如圖所示 . v / ( km / h )t / h050403020108642 ( 1)在這個問題中,速度 v 與時間 t 之間的函數(shù)關(guān)系是用哪種方法表示的? 2 ( 2)時間 t 的取值范圍是什么? ( 3)當時間 t 為何值時,汽車行駛速度最大?最大速度是多少?當時間 t 取何值時,速度為0? ( 4)在哪一時間段汽車的行駛速度逐漸增加?在哪一時間段汽車的行駛速度逐漸減少?在哪一時間段汽車按勻速運動行駛? ( 5)根據(jù)圖象, 填寫下表: t 0 1 2 3 4 5 6 7 v 2. 如圖,正三角形 ABC 內(nèi)接于圓 O ,設(shè)圓的半徑為 r . 試寫出圓中除三角形外的部分 面積 S 與 r 之間的函數(shù)關(guān)系,它們之間的函數(shù)關(guān)系是用哪種方法 表示的? 四 . 自我小結(jié) 我學(xué)會了 我不明白的地方 五 . 當堂達標 1. 常用來表示函數(shù)的方法有 _______法 . _________法和 ________法 . 2. 正常人的體溫一般在 37℃ 左右,但一天中的不同時刻的體溫不盡相同,如圖是某天 24小時內(nèi)小瑩體溫 T( ℃ )隨時刻 t( h)的變化情況: 這天 _______時她的體溫最高, _______時體溫最低, 12 時的體溫約是 _________℃ . CBArO 3 3. 列車以 90km/h 的速度從 A 地開往 B 地 . ( 1)填寫下表: 行駛時間 x/h 1 2 3 4 5 行駛路程 y/km ( 2)寫出 y 與 x 之間的函數(shù)解析式 . 4( 20xx 哈爾濱市)一輛汽車的油箱中現(xiàn)有汽油 60 升,如果不再加油,那么油箱中的油量 y(單位:升)隨行駛里程 x(單位:千米)增加而減少,若這輛汽車平均耗油量為 升 /千米,則 y 與 x 之間的函數(shù)關(guān)系用圖象表示大致是( ) 4 函數(shù)與它的表示法(第 2 課時) (主備:張芹 審核:李波) 【 學(xué)習(xí)目標 】 1. 進一步加深理解函數(shù)的概念.會根據(jù)函數(shù)解析式確定自變量的取值范圍. 2. 能利用函數(shù)知識解決有關(guān)的實際問題. 【 學(xué)習(xí)過程 】 一 . 自主學(xué)習(xí) 自主學(xué)習(xí) 教材第 6 頁的觀察與思考,完成下列問題: 在同一個 __________中,有兩個 ______x, y. 如果對于變量 x 在可以取值的范圍內(nèi)每取一個_________的值,變量 y 都有一個 _______的值與它對應(yīng),那么就說 ______是 ______的函數(shù) . 二 . 合作探究 1. 求下列函數(shù)中自變量 x 可以取值的范圍: ( 1) 23 ?? xy ; ( 2)12 1?? xy; ( 3) 1?? xy ; ( 4)xxy 53??. 2. 一根蠟燭長 20cm,每小時燃掉 5cm. ( 1)寫出蠟燭剩余的長度 y( cm)與點燃時間 x( h)之間的函數(shù)解析式; ( 2)求自變量 x 可以取值的范圍; ( 3)蠟燭點燃 2h 后還剩多長? 三 . 鞏固練習(xí) 1. 求下列函 數(shù)中自變量 x 可以取值的范圍: 5 ( 1)2 13 ?? xy; ( 2)64 ?? xxy; ( 3) xy 26?? ; ( 4)131?? xy. 2. 等腰三角形 ABC 的周長為 10cm,底邊 BC 長為 y( cm),腰 AB 長為 x( cm) . ( 1)寫出 y 與 x 之間的函數(shù)解析式; ( 2)指出 自變量 x 可以取值的范圍 . 3. 油箱中有油 300L,油從管道中勻速流出, 1 小時流完 . 寫出油箱中剩余的油量 Q( L)與油流出時間 t( s)之間的函數(shù)解析式,并指出自變量 t 可以取值的范圍 . 四 . 自我小結(jié) 我學(xué)會了 我不明白的地方 五 . 當堂達標 1. ( 20xx 呼和浩特市) 函數(shù)31?? xy中,自變量 x 的取值范圍 _________________. 2. ( 20xx 畢節(jié)) 函數(shù) 12??? xxy 中自變量 x 的取值范圍是 ( ) A. x ≥2 B. x ≥2 且 x ≠1 C. x ≠1 D. x ≥2 或 x ≠1 3. 在一個半徑為 10m 的圓形場地內(nèi)建一個正方形操場 . 設(shè)正方形邊長為 x( m),面積為 y( m2),則 y 與 x 的函數(shù)解析式是 _______________,自變量的取值范圍是 ____________. 4. 某航空公司托運行李的費用 y 元與托運行李的質(zhì)量 x( kg)之間的函數(shù)關(guān)系如圖所示 . 根據(jù)圖中的信息,求免費托運行李質(zhì)量的范圍 . 6 y /元x / kgO930630330504030 一次函數(shù)與一元一次不等式 (第 1 課時) (主備:張芹 審核:李波) 【 學(xué)習(xí)目標 】 1. 通過作 函數(shù)圖象 . 觀察函數(shù)圖象,進一步理解函數(shù)概念,并從中初步體會一元一次不等式與一次函數(shù)的內(nèi)在聯(lián)系. 2. 通過具體問題初步體會一次函數(shù)的變化規(guī)律與一元一次不等式解集的聯(lián)系. 【 學(xué)習(xí)過程 】 一 . 自主學(xué)習(xí) 某地空中氣溫 t( ℃ ) 與距地面高度 h( km)之間的函數(shù)關(guān)系如圖所示 . 觀察這個函數(shù)圖象,思考下列問題: ( 1)在這個問題中,該地的地面氣溫是多少?當 h 為何值時,t=0? ( 2)根據(jù)圖象的形狀,怎樣確定 t 與 h
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1