【摘要】OxyijaA(x,y)a兩者相同3.兩個向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2025-08-05 06:17
【摘要】永春三中王門鋅平面向量數(shù)量積的坐標(biāo)表示1、向量加法三角形法則a+b=(x1+x2,y1+y2)2、向量減法三角形法則a–b=(x1–x2,y1–y2)3、實數(shù)與向量的積
2024-11-10 03:15
【摘要】平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示課標(biāo)點(diǎn)擊平面向量共線的坐標(biāo)表示預(yù)習(xí)導(dǎo)學(xué)典例精析課堂導(dǎo)練課堂小結(jié)1.理解向量共線定理.2.掌握兩個向量平行(共線)的坐標(biāo)表示和會應(yīng)用其求解有關(guān)兩向量
2025-07-25 14:48
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-17 19:47
【摘要】第一篇:平面向量基本定理(教學(xué)設(shè)計) 平面向量基本定理 教學(xué)設(shè)計 平面向量基本定理教學(xué)設(shè)計 一、教材分析 本節(jié)課是在學(xué)習(xí)了共線向量基本定理的前提下,進(jìn)一步研究平面內(nèi)任一向量的表示,為今后平面...
2024-11-15 04:09
【摘要】平面向量基本定理復(fù)習(xí)回顧:1、兩個向量共線的充要條件:與非零向量共線的充要條件是,使得有且只有一個實數(shù)如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù),,使得
2024-11-09 00:20
【摘要】專題八平面向量的基本定理(A卷)(測試時間:120分鐘滿分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個小題,每小題5分,,只有一項是符合題目要求的.,向量,則向量()A.B.C.D. 【答案】A【解析】∵=(3,1),∴=(-7,-4),故選A.2.【201
2025-03-25 01:22
【摘要】坐標(biāo)表示、模、夾角復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個非零向量bababa??復(fù)習(xí)引入1.平面向量的數(shù)量積
2024-10-18 14:26
【摘要】平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對實數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-09 09:20
【摘要】第25-26課時教學(xué)題目:平面向量的坐標(biāo)表示及其運(yùn)算習(xí)題課教學(xué)目標(biāo):1、掌握平面向量的坐標(biāo)表示;2、會進(jìn)行向量線性運(yùn)算的坐標(biāo)表示;3、掌握向量共線的充要條件.教學(xué)內(nèi)容:1、平面向量的坐標(biāo)表示;2、向量線性運(yùn)算的坐標(biāo)表示;3、向量共線的充要條件.教學(xué)重點(diǎn):1、向量線性運(yùn)算的坐標(biāo)表示;2、向量共線的充要條件.教學(xué)難點(diǎn):1、向量線性運(yùn)算的坐
【摘要】平面向量的正交分解及坐標(biāo)表示的教學(xué)案例一.案例要解決的教學(xué)困惑:在高中數(shù)學(xué)教材中,很多知識,如果學(xué)生記住結(jié)論,學(xué)生就能解決一系列的數(shù)學(xué)題目。對于這類知識的教學(xué)一直困擾我很久。到底是簡單地讓學(xué)生記住一個公式,一個結(jié)論,或是純粹地模仿技能,還是要讓學(xué)生通過不斷的思考、探究、實踐,摸索總結(jié)出公式和結(jié)論呢?新的《普通數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于對概念、結(jié)論和技能的記憶、模
2025-04-17 01:00
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角(教案)教學(xué)目標(biāo)1.知識目標(biāo):⑴掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運(yùn)算;⑵掌握平面向量的模的坐標(biāo)公式以及平面內(nèi)兩點(diǎn)間的距離公式;⑶掌握兩個平面向量的夾角的坐標(biāo)公式;⑷能用平面向量數(shù)量積的坐標(biāo)公式判斷兩個平面向量的垂直關(guān)系;2.能力目標(biāo):⑴培養(yǎng)學(xué)生的動手能力和探索能力;⑵通過平面向量數(shù)量積的數(shù)與
2025-04-17 01:40
【摘要】第一篇:平面向量基本定理及相關(guān)練習(xí)(含答案) 平面向量2預(yù)習(xí): :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時,a和b同向;(2)...
2024-11-15 04:03
【摘要】《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》說課稿 一、教材分析 :平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量...
2024-12-03 02:07
【摘要】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12