【摘要】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點,它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【摘要】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【摘要】基本不等式練習(xí)題(1)1、若實數(shù)x,y滿足,求xy的最大值解:∵x2+y2=4∴4-2xy=(x-y)2又∵(x-y)2≥0∴4-2xy≥0∴xy≤2即xy的最大值為22、若x0,求的最小值;解:∵?(x)=4x+、x>0∴?(x)≥√4x×∴?(x)≥3即?(x)的最小值為33、若,求的最大值解:∵
2025-06-24 16:38
【摘要】基本不等式課時目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),___
2024-12-05 06:37
【摘要】第2課時基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【摘要】【成才之路】2021年春高中數(shù)學(xué)第3章不等式3基本不等式第2課時基本不等式與最大(小)值同步練習(xí)北師大版必修5一、選擇題1.已知a≥0,b≥0,且a+b=2,則()A.a(chǎn)b≤12B.a(chǎn)b≥12C.a(chǎn)2+b2≥2D.a(chǎn)2+b2≤2[答案]C
2024-12-05 06:35
【摘要】第一篇:高中數(shù)學(xué)基本不等式及其應(yīng)用教案 基本不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)和a3+b3+c3≥3abc(a、...
2025-10-20 06:13
【摘要】第一篇:高中數(shù)學(xué)不等式證明常用方法 本科生畢業(yè)設(shè)計(論文中學(xué)證明不等式的常用方法 所在學(xué)院:數(shù)學(xué)與信息技術(shù)學(xué)院 專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué) 姓名:張俊 學(xué)號:1010510020指導(dǎo)教師:曹衛(wèi)東 ...
2025-10-20 10:42
【摘要】第7課時基本不等式的實際應(yīng)用,并會用基本不等式來解題..今天我們來探究基本不等式在實際生活中的應(yīng)用,我們先來看個實際例子:如圖,有一張單欄的豎向張貼的海報,它的印刷面積為72dm2(圖中陰影部分),上下空白各2dm,左右空白各1dm,則四周空白部分面積的最小值是dm2.問題1
2024-11-18 08:09
【摘要】人教版高中數(shù)學(xué)必修5第三章不等式單元測試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列說法正確的是( )A.a(chǎn)b?ac2bc2 B.a(chǎn)b?a2b2C.a(chǎn)>
2025-06-18 13:49
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2024-11-18 08:51
【摘要】《基本不等式》同步測試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個選項中,只有一項是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2024-11-15 21:17
【摘要】解不等式高考要求不等式要求層次重難點一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識內(nèi)容1.含有一個未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-07-24 02:03
【摘要】第3章不等式(時間:120分鐘,滿分160分)一、填空題(本大題共14小題,每小題5分,共70分,請把答案填在題中橫線上)1.(2021·南京檢測)若1a<1b<0,則下列不等式:①a+b<ab,②|a|>|b|,③a<b,④ba+ab>2中,正確的是________.(填序號)
2024-12-05 06:25
【摘要】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標(biāo)教學(xué)過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52