【摘要】拋物線的標準方程投籃運動噴泉太陽灶太陽灶軸截面示意圖已知太陽灶的灶口直徑為2米,灶深為,太陽灶的聚光點應該在什么位置?ABM2把方程y2=2px(p>0)
2025-11-08 23:31
【摘要】高中蘇教選修(2-1)拋物線水平測試題一、選擇題1.已知拋物線的頂點在原點,焦點在y軸上,其上的點(3)Pm,到焦點的距離為5,則拋物線方程為()A.28xy?B.24xy?C.24xy??D.28xy?答案:A2.拋物線212yx?截直線21yx??所得弦長等于
2025-11-26 03:04
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學平均變化率課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=x+1x在[2,3]上的平均變化率為________.【解析】f(3)-f(2)3-2=(3+13)-(2+12)3-2=56.【答案】562.一質(zhì)
2025-11-25 20:01
【摘要】第二章圓錐曲線與方程拋物線的簡單幾何性質(zhì)xyo準線方程焦點坐標標準方程圖形xyoFy2=2px(p0)x2=2py(p0)x2=-2py(p0)xyoFxyoFxyoFy
2025-08-05 07:31
【摘要】拋物線復習課【知識回顧】標準方程圖形焦點準線)0(22??ppxy)0(22??ppyxxyoF.xyFo)0,2(pF.yxoF2px??)2,0(pFxoyF2py??)0(22
2025-11-09 13:30
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學正態(tài)分布課后知能檢測蘇教版選修2-3一、填空題1.若P(x)=12πe-(x-1)22(x∈R),則下列判斷正確的是________.①有最大值,也有最小值;②有最大值,無最小值;③無最大值,有最小值;④無最大值
2025-11-26 03:08
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學回歸分析課后知能檢測蘇教版選修2-3一、填空題1.已知回歸直線的斜率的估計值為,樣本點的中心為(4,5),則回歸直線方程是________.【解析】回歸直線方程為:y^-5=(x-4)即y^=+【答案】y^=+2.(2021&
2025-11-26 09:27
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學常見函數(shù)的導數(shù)課后知能檢測蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
【摘要】拋物線的標準方程復習提問:平面內(nèi)到一個定點F的距離和它到一條定直線l的距離的比是常數(shù)e的動點M的軌跡.(直線l不經(jīng)過點F)·MFl0<e<1lF·Me>1(1)當0<e<1時,點M的軌跡是什么?(2)當e>1時,點M的軌
2025-11-09 08:47
【摘要】【課堂新坐標】(教師用書)2020-2020學年高中數(shù)學雙曲線的幾何性質(zhì)課后知能檢測新人教B版選修1-1一、選擇題1.等軸雙曲線的一個焦點是F1(-6,0),則它的標準方程是()218-x218=1B.x218-y218=128-y28=1D.y28-
2025-11-10 10:30
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學圓錐曲線的共同性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.若橢圓x225+y29=1上的點P到左焦點的距離為6,則點P到右準線的距離為________.【解析】∵?????PF1+PF2=10PF1=6,∴PF2=4,
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學簡單的邏輯連結詞課后知能檢測蘇教版選修1-1一、填空題1.分別用“p或q”“p且q”“非p”填空.(1)命題“3的值不超過2”是“________”的形式;(2)命題“x=2或x=3是方程(x-2)(x-3)=0的解”是“__
2025-11-26 03:09
【摘要】雙曲線的幾何性質(zhì)課題第1課時計劃上課日期:教學目標知識與技能1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.過程與方法情感態(tài)度與價值觀教學重難點雙曲線的幾何性質(zhì)及初步運用教
2025-11-11 00:30
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學四種命題課后知能檢測蘇教版選修1-1一、填空題1.下列語句是命題的是________.①若a>b0,則a2>b2;②a2>b2;③方程x2-x-1=0的近似根;④方程x2-x-1=0有根嗎?【解析】②③
2025-11-25 21:34
【摘要】橢圓的幾何性質(zhì)1課題第1課時計劃上課日期:教學目標[知識與技能1.掌握橢圓的基本幾何性質(zhì):范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質(zhì)過程與方法情感態(tài)度與價值觀教學重難點橢圓的幾何性質(zhì)——范圍、對稱性、頂點教學流程\內(nèi)容\板