【摘要】1、確定一個圓的位置與大小的條件是什么?①圓心與半徑2、敘述角平分線的性質(zhì)與判定性質(zhì):角平分線上的點到這個角的兩邊的距離相等.判定:到這個角的兩邊距離相等的點在這個角的平分線上.3、下圖中△ABC與圓O的關(guān)系?△ABC是圓O的內(nèi)接三角形;圓O是△ABC的外接圓圓心O點叫△ABC的外心或②不在同一直線
2024-12-08 03:00
2024-12-07 23:43
【摘要】如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC·O,在圓O上任取一點A,過點A畫圓O的切線PO2、如圖,D、E、F在圓O上,分別過點D、E、F作圓O的切線。3條切線兩兩相交于點A、B、C·ODEF.
【摘要】三角形的內(nèi)切圓(一)提出問題如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關(guān)鍵是什么?提出以下幾個問題進行討論:(2)假設(shè)⊙I是所求作的圓,
2024-12-07 13:04
【摘要】三角形的內(nèi)切圓教學目的:1.使學生掌握三角形的內(nèi)切圓的作法.2.使學生掌握三角形內(nèi)心的定義和性質(zhì).教學的重點和難點:三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應用即是重點,又是難點.教學過程:一、復習與提問(學生回答)角的平分線的性質(zhì)定理和判定定理二、講授新課1.
2024-12-07 23:37
【摘要】第七章圓第九節(jié)三角形的內(nèi)切圓(一)提出問題如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關(guān)鍵是什么?提出以下幾個問題進行討論:(2)
2024-11-18 15:50
【摘要】確定圓的條件是什么?角平分線的定義、性質(zhì)和判定都是什么?由于不共線三點確定一個圓,因此每一個三角形都有且只有一個外接圓,圓心是三邊垂直平分線的交點,叫做三角形的外心.外心到三角形三個頂點的距離相等。三角形的外心可能在三角形內(nèi)(銳角三角形),可能在三角形的一邊上(直角三角形的外心是斜邊的中點),可能在三角形外面(鈍角三角形).
2024-11-17 00:21
【摘要】 《三角形的內(nèi)切圓》同步提升練習 一、選擇題 1.下列命題正確的是() A.三角形的內(nèi)心到三角形三個頂點的距離相等 B.三角形的內(nèi)心不一定在三角形的內(nèi)部 C.等邊三角形的內(nèi)心,外心重合 ...
2024-12-07 00:49
【摘要】提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓:使它和已知三角形的各邊都相切已知:△ABC求作:和△ABC的各邊都相切的圓ABCOMNDO就是所求的圓。作法:1、作∠B,∠C的平分線BM和CN,交點為O2、過點O作OD
【摘要】北師版九年級下冊第3課時三角形的內(nèi)切圓如圖是一張三角形的鐵皮,工人師傅要從中截下一塊圓形的用料,怎樣才能使截下的圓的面積盡可能大呢?新課導入ABC第二種情況ABC第四種情況第一種情況ABC猜測ABC第三種情況問題:在這塊三角形鐵皮上還能截下更大的
2025-03-12 15:23
【摘要】 九年級數(shù)學《三角形的內(nèi)切圓》評課稿 本節(jié)課教學層次分明,教學過程教流暢,較好地體現(xiàn)了學生的主體性,是一節(jié)比較成功的公開課。 一、概念的引入上體現(xiàn)了解決“從何來”的問題,周老師用怎樣從一塊...
2025-04-03 12:25
【摘要】三角形的內(nèi)切圓◆基礎(chǔ)訓練1.如圖1,⊙O內(nèi)切于△ABC,切點為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-15 20:19
【摘要】三角形的內(nèi)切圓學前溫故1.經(jīng)過三角形三個頂點的圓叫做三角形的外接圓.外接圓的圓心叫做三角形的外心.這個三角形叫做圓的內(nèi)接三角形.2.三角形的外心到三角形的三個頂點距離相等.新課早知1.與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心.這個三角形叫做圓的外切三角形.2.三角
2024-11-18 16:05
【摘要】www.czsx.com.OBAP三角形的內(nèi)切圓學習目標1、了解切線長的概念.了解三角形的內(nèi)切圓、三角形的內(nèi)心等概念。2、理解切線長定理,并能熟練運用切線長定理進行解題和證明(重點)3、會作已知三角形的內(nèi)切圓(重點)教學流程一、課前延伸1、只限于演的有幾種位置關(guān)系?分貝是那幾種?
2024-11-19 23:47
【摘要】切線的判定定理:1、和圓只有一個公共點的直線是圓的切線2、和圓心的距離等于半徑的直線是圓的切線3、經(jīng)過半徑外端點且垂直于半徑的直線是圓的切線.....··oo′pOPOP為直徑作⊙O′,與⊙O交于A、B兩點。AB即直線
2025-02-24 18:36