【摘要】2探索軸對稱的性質(zhì)1軸對稱現(xiàn)象第五章生活中的軸對稱1.通過觀察生活中的軸對稱現(xiàn)象,經(jīng)歷探索簡單圖形軸對稱的過程,體驗軸對稱的特征,發(fā)展空間觀念.2.通過大量的實例初步認(rèn)識軸對稱,能識別簡單的軸對稱圖形及其對稱軸.3.探索軸對稱的基本性質(zhì),理解對應(yīng)點所連的線段被對稱軸垂直平分、對應(yīng)線段相等、對應(yīng)角相等的性質(zhì).仔細(xì)觀察所給的圖形
2025-06-12 06:34
【摘要】第五章生活中的軸對稱1軸對稱現(xiàn)象2探索軸對稱的性質(zhì)【基礎(chǔ)梳理】(1)軸對稱圖形:_____平面圖形沿一條直線折疊后,直線兩旁的部分能夠_________的圖形.一個互相重合(2)軸對稱:如果_____平面圖形沿一條直線對折后能夠_________,那么稱這兩個圖形成軸對稱.兩個
2025-06-14 05:24
【摘要】第五章生活中的軸對稱第五章軸對稱復(fù)習(xí)一、學(xué)習(xí)目標(biāo):掌握軸對稱的有關(guān)概念,掌握線段、角、等腰三角形的性質(zhì),并能靈活應(yīng)用上述知識解題。二、學(xué)習(xí)重點:復(fù)習(xí)軸對稱的基本性質(zhì),簡單的軸對稱圖形,并會運用軸對稱的性質(zhì)解決相關(guān)問題。三、學(xué)習(xí)難點:軸對稱與軸對稱圖形的關(guān)系和區(qū)別,靈活運用軸對稱的性質(zhì)解決相關(guān)問題。本章知識
2024-11-19 15:45
【摘要】探索軸對稱的性質(zhì)授課班級:初一九班授課人:張輝2021年5月28日如果一個圖形沿某條直線
2024-12-01 01:04
【摘要】第五章生活中的軸對稱4利用軸對稱進(jìn)行設(shè)計“對稱是一種思想,通過它,人們畢生追求,并創(chuàng)造次序、美麗和完善…”在我們生活的世界中,許多美麗的事物都是利用軸對稱設(shè)計的,它們不僅裝點了我們的生活,更讓我們感受到了自然界的美與和諧。下面就讓我們動腦動手發(fā)現(xiàn)美、感受美、創(chuàng)造美。取一張長30厘米、
2024-11-26 18:30
【摘要】知識點利用軸對稱設(shè)計圖案(1)剪紙是中華民族的民間藝術(shù),我國民間剪紙從內(nèi)容到形式具有鮮明的民族色彩.(2)剪紙的原理:軸對稱及軸對稱圖形的性質(zhì).利用軸對稱的性質(zhì)進(jìn)行設(shè)計:(1)相鄰的兩個圖案成軸對稱,兩個圖案的形狀、大小完全一樣;(2)折疊紙所得的折痕所在的直線就是所剪出圖案的對稱軸,這些折痕互相平行,而
2025-06-13 07:59
【摘要】《探索軸對稱的性質(zhì)》導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】。?!臼褂谜f明與學(xué)法指導(dǎo)】118頁到119頁,用紅筆進(jìn)行勾畫軸對稱的性質(zhì);再針對課前預(yù)習(xí)二次閱讀教材,并回答問題.,隨時記錄在課本或?qū)W(xué)案上,準(zhǔn)備課上討論質(zhì)疑.【課前預(yù)習(xí)】(一)(自學(xué)、完成教材P118-119的內(nèi)容,并回答下列問題。)
2024-12-08 10:59
【摘要】(1)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】1.經(jīng)歷探索簡單圖形軸對稱性的過程,進(jìn)一步體驗軸對稱的特征,發(fā)展空間觀念.探索并了解“三線合一”有關(guān)性質(zhì),應(yīng)用“三線合一”的性質(zhì)解決一些實際問題.,應(yīng)用線段垂直平分線的性質(zhì)解決一些實際問題.【使用說明與學(xué)法指導(dǎo)】121頁到124頁,用紅筆進(jìn)行勾畫“三線合一”有關(guān)性質(zhì),線段垂直平分線的有關(guān)
2025-06-13 07:42
【摘要】21EDCPOBA《簡單的軸對稱圖形》導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】在探究作已知角的平分線的方法和角平分線的性質(zhì)的過程中,發(fā)展幾何直覺。提高綜合運用三角形全等的有關(guān)知識解決問題的能力,初步了解角的平分線的性質(zhì)在生活、生產(chǎn)中的應(yīng)用.【使用說明與學(xué)法指導(dǎo)】125頁到126頁,用紅筆進(jìn)行勾畫角的平分線的方法;再針對課前預(yù)
2024-12-08 05:07
【摘要】第五章《生活中的軸對稱》檢測題A一.選擇題(共12小題)1.以下圖形中對稱軸的數(shù)量小于3的是( )A. B. C. D.2.如圖,直線MN是四邊形AMBN的對稱軸,點P是直線MN上的點,下列判斷錯誤的是( )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM3.已知△ABC的周長是l,BC=l﹣2AB,則下列直線一定為
2025-01-14 16:57
【摘要】知識點一等腰三角形有兩條邊相等的三角形是等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.如圖5-3-1.圖5-3-1(1)等腰三角形的兩個底角相等(簡寫成“等邊對等角”).(2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡稱“三線合一”
2025-06-18 20:40
【摘要】 第五章《生活中的軸對稱》檢測題B一.選擇題1.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是( ?。〢. B. C. D.2.一個等腰三角形一邊長為4cm,另一邊長為5cm,那么這個等腰三角形的周長是( ?。〢.13cm B.14cm C.13cm或14cm D.以上都不對
2025-01-14 17:30
2025-06-18 15:28
【摘要】探索軸對稱的性質(zhì)三維目標(biāo)::探索軸對稱的基本性質(zhì),掌握對應(yīng)點所連的線段被對稱軸垂直平分、對應(yīng)線段相等、對應(yīng)角相等的性質(zhì)。:通過本節(jié)課的學(xué)習(xí),幫助學(xué)生更容易地感受到數(shù)學(xué)與現(xiàn)實生活的聯(lián)系.標(biāo):體驗數(shù)學(xué)在解決實際問題中的作用,培養(yǎng)學(xué)生實事求是的態(tài)度及合作交流的能力。:通過環(huán)環(huán)相扣的、層層深入的問題設(shè)置,鼓勵學(xué)生積極參與,培養(yǎng)學(xué)生自
2024-12-08 18:36