【摘要】正弦余弦定理證明教案【基礎(chǔ)知識精講】、三角形面積公式正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,并且都等于該三角形外接圓的直徑,即:===2R.面積公式:S△=bcsinA=absinC=acsinB.變形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=,sinB=,sinC=.
2025-04-17 04:49
【摘要】例3AB是底部B不可到達(dá)的一個建筑物,A為建筑物的最高點,設(shè)計一種測量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達(dá)的,所以不能直接測量出建筑物的高。由解直角三角形的知識,只要能測出一點C到建筑物的頂部A的距離CA,并測出由點C觀察A的仰角,就可以計算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識測出CA的長。)
2025-08-16 01:09
【摘要】正弦定理和余弦定理練習(xí)題(新課標(biāo))1、選擇題1.在△ABC中,角A、B、C的對邊分別是a、b、c,A=,a=,b=1,則c等于()A.1B.2C.D.
2025-03-25 04:59
【摘要】第一篇:正弦定理與余弦定理習(xí)題總結(jié) 正弦定理與余弦定理 ab :sinA=sinBc=sinC =2R,+c2-a :a=b+c-2bccosA,b=a+c-2accosB,cosA= △...
2024-10-06 07:29
【摘要】......高考正弦定理和余弦定理練習(xí)題及答案一、選擇題1.已知△ABC中,a=c=2,A=30°,則b=( )A. B.2C.3 D.+1答案:
2025-06-26 05:01
【摘要】課題:正弦定理、余弦定理綜合運(yùn)用(二)?課題:正弦定理、余弦定理綜合運(yùn)用(二)知識目標(biāo):1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進(jìn)行邊角互換。能力目標(biāo):1、進(jìn)一步熟悉正、余弦定理;2、
2025-08-16 01:07
【摘要】第一篇:正弦定理和余弦定理練習(xí)題 【正弦定理、余弦定理模擬試題】 : ,a=23,b=22,B=45°,則A為() °或120°°°或150°° sinAcosB ,若=,則DB=() ...
【摘要】正弦定理和余弦定理的應(yīng)用舉例考點梳理1.用正弦定理和余弦定理解三角形的常見題型測量距離問題、高度問題、角度問題、計算面積問題、航海問題、物理問題等.2.實際問題中的常用角(1)仰角和俯角與目標(biāo)線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角,目標(biāo)視線在水平視線上方的角叫仰角,目標(biāo)視線在水平視線下方的角叫俯角(如圖①).(2)方向角:相對于某正方向的水平角,
2025-06-24 02:22
2025-08-16 01:55
【摘要】第一篇:正弦、余弦定理綜合應(yīng)用 班別第小組姓名學(xué)號 正、余弦定理的綜合應(yīng)用 一、知識要點 (一)1.正弦定理: a sinA ()2.變形公式:(1)a=2RsinA,b=c= (2)...
2025-09-25 23:55
【摘要】高考正弦定理和余弦定理練習(xí)題及答案一、選擇題1.已知△ABC中,a=c=2,A=30°,則b=( )A. B.2C.3 D.+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2.2.△ABC中,a=,b=,sinB=,則符合條件的三角形有( )
2025-06-26 04:58
【摘要】第一篇:數(shù)學(xué):正弦定理、余弦定理的應(yīng)用教案(蘇教版必修5) 您身邊的志愿填報指導(dǎo)專家 第5課時:§正弦定理、余弦定理的應(yīng)用(1) 【三維目標(biāo)】: 一、知識與技能 ,并能應(yīng)用正弦定理、余弦...
2024-10-06 05:35
【摘要】余弦定理復(fù)習(xí)回顧::2.正弦定理的作用:解三角形:(1)已知兩邊及其中一邊所對的角(2)已知兩角及一邊sinsinsinabcABC??探究:問題:在△ABC中,已知a、b,和角C,求c。(即用a、b、C表示c)
2025-07-18 09:05
【摘要】第一篇:2014屆高考數(shù)學(xué): 一、選擇題 1.在△ABC中,若2cosBsinA=sinC,則△ABC一定是() A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等邊三角形 解析...
2025-09-22 14:14
【摘要】余弦定理說課稿 (一)教材地位與作用 《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,前面已經(jīng)學(xué)習(xí)了正弦定理以及必修4中的任意角、誘導(dǎo)公式以及恒等變換,為后面學(xué)習(xí)三角函數(shù)奠定了...
2025-04-13 12:00