【摘要】北師大版九年級下冊數(shù)學(xué)二次函數(shù)解析式有哪幾種表達(dá)方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標(biāo),可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)情境導(dǎo)入本節(jié)目標(biāo)..(西安·中考)如圖,在平面
2025-06-15 05:25
2025-06-15 05:27
【摘要】一.選擇題:1.已知拋物線的頂點為(1,2),且通過(1,10),則這條拋物線的表達(dá)式為()A.y=3-2B.y=3+2C.y=3-2D.y=-3-22.已知二次函數(shù)的圖象過點(1,-1),(2,-4),(0,4)三點,那么它的對稱軸是直線()A.B.C.D.3.一個二次函數(shù)
2025-03-25 06:36
【摘要】二次函數(shù)一、選擇題1.下列函數(shù)中屬于一次函數(shù)的是(),屬于反比例函數(shù)的是(),屬于二次函數(shù)的是()A.y=x(x+1)B.xy=1C.y=2x2-2(x+1)2D.132??xy2.在二次函數(shù)①y=3x2;②2234;32xyxy??③中,圖象在同一水平線上的開口大小順
2024-11-28 19:22
【摘要】確定二次函數(shù)的表達(dá)式一、選擇題(共20小題;共100分)1.在拋物線上的一個點是()A.()B.()C.()D.()2.二次函數(shù)()的圖象經(jīng)過點(),則代數(shù)式的值為(
2024-11-15 02:37
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-12 08:20
【摘要】用三種方式表達(dá)二次函數(shù)——確定二次函數(shù)的表達(dá)式一、選擇題y=21x2+2x+1寫成y=a(x-h(huán))2+k的形式是=21(x-1)2+2=21(x-1)2+21=21(x-1)2-3=21(x+2)2-1y=-2x2-x+1的頂點在第_____象限
2024-12-05 05:43
【摘要】知識好像砂石下的泉水,掘得越深,泉水越清。
2024-11-25 22:45
【摘要】確定二次函數(shù)的表達(dá)式一、教學(xué)目標(biāo)1.經(jīng)歷確定二次函數(shù)表達(dá)式的過程,體會求二次函數(shù)表達(dá)式的思想方法,培養(yǎng)數(shù)學(xué)應(yīng)用意識。2.會利用待定系數(shù)法求二次函數(shù)的表達(dá)式。二、教學(xué)重、難點:教學(xué)重點:能求出二次函數(shù)的表達(dá)式教學(xué)難點:準(zhǔn)確選擇有關(guān)形式求解二次函數(shù)的表達(dá)式
2024-12-08 20:06
【摘要】二次函數(shù)的應(yīng)用(二)一、選擇題1.如圖2-109所示的拋物線的解析式是()A.y=x2-x+2B.y=-x2-x+2C.y=x2+x+2D.y=-x2+x+22.(2021?佛山,第6題3分)下列函數(shù)中,當(dāng)x>0時,y值隨x值的增大而減小的是(
【摘要】崔金花確定二次函數(shù)的解析式?我們在確定一次函數(shù)y=kx+b的關(guān)系時,通常需要__個獨立的條件;確定反比例函數(shù)?時,通常需要__個條件,如果確定二次函數(shù)?Y=ax2+bx+c的關(guān)系式時,又需要___個條件呢?kyx?213二次函數(shù)解析式的幾種表達(dá)式?一般式:y=ax2+bx+c22
2024-11-28 01:30
2025-06-14 12:05
【摘要】謝謝觀看Thankyouforwatching!
【摘要】確立二次函數(shù)表達(dá)式1.已知一個二次函數(shù)的圖象過(1,5)、(1,1??)、(2,11)三點,求這個二次函數(shù)的解析式。2.已知二次函數(shù)的圖象的頂點坐標(biāo)為(-2,-3),且圖像過點(-3,-1),求這個二次函數(shù)的解析式.mxxy???2的圖象過點(1,2),則m的值為________________.(0,1
2024-11-24 22:07
【摘要】確立二次函數(shù)表達(dá)式1已知二次函數(shù)的圖象的頂點坐標(biāo)為(1,-3),且圖像過點(2,-5),求這個二次函數(shù)的解析式.開口,頂點坐標(biāo)是,對稱軸是,當(dāng)x=時,y有最值為。(-2,-3),且圖像過點(-3,-2),求這個二次函數(shù)的解