【摘要】第一篇:線面垂直面面垂直及二面角專題練習(xí) 線面垂直專題練習(xí) 一、定理填空: 如果一條直線和,線面垂直判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,:如果兩條平行線中的一條于一個(gè)平面...
2024-11-09 12:06
【摘要】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關(guān)系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個(gè)半平面。從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2024-11-17 23:19
【摘要】第九章直線、平面、簡(jiǎn)單幾何體第講(第一課時(shí))考點(diǎn)搜索●直線和平面所成的角的概念與計(jì)算●二面角、二面角的平面角的概念,平面角大小的計(jì)算高考高考猜想1.利用幾何或向量方法求直線和平面所成的角、二面角的平面角.2.轉(zhuǎn)化角的條件,探求角的范圍.1.一個(gè)平面的斜線和它在這個(gè)平面內(nèi)的_
2025-05-10 21:38
【摘要】二面角與平面和平面的垂直關(guān)系(一)1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個(gè)半平面。從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl按此繼續(xù)l??AB??二
2025-01-12 23:48
【摘要】毛洪清一、直線的方向向量定義直線L上的向量以及與向量共線的向量叫直線L的方向向量.?例:直線L過(guò)點(diǎn)P(-2,3,1),Q(1,0,-1),則直線L的一個(gè)方向向量為______ee(3,-3,-2)答案:L二、平面的法向量定義如果表示非零向量的有向線段所在
2024-11-12 17:26
【摘要】二面角(2)復(fù)習(xí)提問(wèn):lP??ABABP??ABO??lP①、定義法②、三垂線(逆)定理法③、垂面法CQ∠APBQCPA,?l作二面角的平面角的常用方法??AB
2025-08-01 17:44
【摘要】菜單新課標(biāo)·理科數(shù)學(xué)(廣東專用)利用空間向量法求直線與平面所成的角的方法:(1)分別求出斜線和它在平面內(nèi)的射影的方向向量,轉(zhuǎn)化為求兩個(gè)方向向量的夾角(或其補(bǔ)角);(2)通過(guò)平面的法向量來(lái)求,即求出斜線的方向向量與平面的法向量所夾的銳角,取其余角就是斜線和平面所成的角.菜
2025-08-05 03:44
【摘要】ABDClβαDCBADCBAE立體幾何中的向量方法——二面角【學(xué)習(xí)目標(biāo)】能用向量方法解決二面角的計(jì)算問(wèn)題.【自主學(xué)習(xí)】1.二面角的大小是用它的平面角來(lái)度量的,求二面角關(guān)鍵是確定二面角的平面角.探究,二面角α-l-β,AB?α,CD?β,AB⊥
2024-11-19 23:24
【摘要】判定定理判定定理1、線線垂直線面垂直面面垂直定義性質(zhì)定理復(fù)習(xí)提問(wèn)2、證明直二面角的方法:2)二面角的大小為9001)判定定理例1、已知∠
2025-07-23 08:32
【摘要】1、定義:兩個(gè)平面相交,如果它們所成的二面角是直二面角,則兩個(gè)平面垂直????性質(zhì):1、凡是直二面角都相等2、兩個(gè)平面相交,可引成四個(gè)二面角,如果其中有一個(gè)是直二面角,那么其他各個(gè)二面角都是直二面角記作α⊥β一、兩平面垂直兩個(gè)平面相交,如果其中一個(gè)平面內(nèi)只有一
【摘要】3.5平面的法向量課堂互動(dòng)講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),會(huì)求平面的法向量.2.能運(yùn)用平面的法向量證明平行與垂直問(wèn)題.課前自主學(xué)案溫故夯基1.如果一條直線l與平面α內(nèi)的______直線都垂直,那么就稱l與平面α垂直.2.如果一條直線垂直于一個(gè)平
2024-11-12 18:19
【摘要】-利用向量解決空間的距離問(wèn)題(四)向量法求空間距離的求解方法:兩點(diǎn)間的距離、點(diǎn)到直線的距離、點(diǎn)到平面的距離、直線到平面的距離、平行平面的距離、異面直線間的距離.其中直線到平面的距離、平行平面的距離都可以轉(zhuǎn)化點(diǎn)到平面的距離.:設(shè)A(x1,y1,z1),B(x2,y2,z3),則222121212()()(
2025-08-05 04:08
【摘要】研究從今天開始,我們將進(jìn)一步來(lái)體會(huì)向量這一工具在立體幾何中的應(yīng)用.為了用向量來(lái)研究空間的線面位置關(guān)系,首先我們要用向量來(lái)表示直線和平面的“方向”。那么如何用向量來(lái)刻畫直線和平面的“方向”呢?一、直線的方向向量AB直線l上的向量以及與共線的向量叫做直線l的方向向量。由于垂直于同一平面的直線是互相平行的,所
2025-04-30 18:16
【摘要】平面直線的方向向量是如何定義的?唯一嗎?如何表示空間直線的方向?空間直線的方向向量和平面的法向量對(duì)于空間任意一條直線l,我們把與直線平行的非零向量d叫做直線的一個(gè)方向向量。?方向向量空間直線的方向向量是唯一的嗎?一個(gè)空間向量能夠表示幾條空間直線的方向向量?例1:如圖所示的空間直角
2025-08-16 01:54
【摘要】二面角的求法一、定義法:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面,在棱上取點(diǎn),分別在兩面內(nèi)引兩條射線與棱垂直,這兩條垂線所成的角的大小就是二面角的平面角。本定義為解題提供了添輔助線的一種規(guī)律。如例1中從二面角S—AM—B中半平面ABM上的一已知點(diǎn)(B)向棱AM作垂線,得垂足(F);在另一半平面ASM內(nèi)過(guò)該垂
2025-04-04 05:09