【摘要】1.導數(shù)的概念1.知道函數(shù)的瞬時變化率的概念,理解導數(shù)的概念.2.能利用導數(shù)的定義求函數(shù)的導數(shù).本節(jié)重點:導數(shù)的定義.本節(jié)難點:用導數(shù)的定義求函數(shù)的導數(shù).對導數(shù)的定義要注意:第一:Δx是自變量x在x0處的改變量,所以Δx可正可負,但Δx≠
2024-11-17 23:15
【摘要】1.了解復合函數(shù)的定義,并能寫出簡單函數(shù)的復合過程;2.掌握復合函數(shù)的求導方法,并運用求導方法求簡單的復合函數(shù)的導數(shù).本節(jié)重點:①導數(shù)公式和導數(shù)運算法則的應用.②復合函數(shù)的導數(shù).本節(jié)難點:復合函數(shù)的求導方法.復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和
2024-11-17 17:04
【摘要】命題【學習目標】1.理解什么是命題,會判斷一個命題的真假.2.分清命題的條件和結論,能將命題寫成“若p,則q”的形式.【自主學習】研讀教材,回答下列問題::.從命題定義中可以看出,命題具備的兩個基本條件是:
2024-11-19 23:25
【摘要】理解類比推理概念,能利用類比推理的方法進行簡單的推理,體會并認識合情推理在數(shù)學發(fā)現(xiàn)中的作用.本節(jié)重點:類比推理.本節(jié)難點:類比推理的特點及應用.1.類比推理由兩類對象具有某些特征和其中一類對象的某些,推出另一類對象也具有這些特征的推理稱為類比推理(簡稱類比).簡言之,類比推理是由到
2024-11-17 23:20
【摘要】1.基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則1.熟記基本初等函數(shù)的導數(shù)公式,理解導數(shù)的四則運算法則.2.能利用導數(shù)的四則運算法則和導數(shù)公式,求簡單函數(shù)的導數(shù).本節(jié)重點:導數(shù)公式和導數(shù)的運算法則及其應用.本節(jié)難點:導數(shù)公式和運算法則的應用.1.基本初等函數(shù)的導數(shù)公式
2024-11-17 19:03
【摘要】-類比推理,發(fā)明了鋸,發(fā)明了潛水艇.,發(fā)現(xiàn)火星與地球有許多類似的特征;1)火星也繞太陽運行、饒軸自轉的行星;2)有大氣層,在一年中也有季節(jié)變更;3)火星上大部分時間的溫度適合地球上某些已知生物的生存,等等.科學家猜想;火星上也可
2024-11-18 15:24
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學高中數(shù)學線面垂直學案新人教A版必修2【學習目標】1.了解直線與平面垂直的定義;2.理解并掌握直線與平面垂直的判定;3.會求直線與平面所成角。【學習重點】直線與平面垂直的判定、直線與平面所成角?!緦W習難點】定義既體現(xiàn)判定又體現(xiàn)性質、空間角到平面角的轉化思想。【問題導學】
2024-12-05 06:43
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學高中數(shù)學面面垂直學案新人教A版必修2【學習目標】了解平面與平面垂直的定義;理解并掌握平面與平面垂直的判定;3.會求二面角。【學習重點】平面與平面垂直的判定、平面與平面所成的二面角?!緦W習難點】定義既體現(xiàn)判定又體現(xiàn)性質、空間角到平面角的轉化思想。【問題導學】
【摘要】1.導數(shù)的幾何意義理解導數(shù)的幾何意義,會求曲線的切線方程.本節(jié)重點:導數(shù)的幾何意義及曲線的切線方程.本節(jié)難點:求曲線在某點處的切線方程.1.深刻理解“函數(shù)在一點處的導數(shù)”、“導函數(shù)”、“導數(shù)”的區(qū)別與聯(lián)系(1)函數(shù)在一點處的導數(shù)f′(x0)是
【摘要】選修2-21.1變化率與導數(shù)1.變化率問題1.通過實例了解平均變化率的概念.2.會求一些簡單函數(shù)的平均變化率.本節(jié)重點:函數(shù)的平均變化率的概念.本節(jié)難點:函數(shù)平均變化率的求法.1.Δx是自變量x在x0處的改變量,它可以為正,也可以為負,但不能等于零,而
【摘要】1.3導數(shù)在研究函數(shù)中的應用1.函數(shù)的單調性與導數(shù)借助于函數(shù)的圖象了解函數(shù)的單調性與導數(shù)的關系,能利用導數(shù)研究函數(shù)的單調性,會用導數(shù)法求函數(shù)的單調區(qū)間.本節(jié)重點:利用導數(shù)研究函數(shù)的單調性.本節(jié)難點:用導數(shù)求函數(shù)單調區(qū)間的步驟.1.函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)的單調性與
【摘要】1.函數(shù)的最大(小)值與導數(shù)1.理解函數(shù)最值的概念及閉區(qū)間上函數(shù)存在最值的定理.2.掌握用導數(shù)求閉區(qū)間上函數(shù)最大值和最小值的方法.本節(jié)重點:函數(shù)在閉區(qū)間上最值的概念與求法.本節(jié)難點:極值與最值的區(qū)別與聯(lián)系,求最值的方法.極值與最值的區(qū)別和聯(lián)系(1)函數(shù)的極值表示函數(shù)
【摘要】1.6微積分基本定理1.通過實例,直觀了解微積分基本定理的含義;2.利用微積分基本定理,求函數(shù)的定積分.本節(jié)重點:微積分基本定理.本節(jié)難點:導數(shù)與積分的關系;利用微積分基本定理求函數(shù)的定積分.1.微積分基本定理設曲邊梯形在x軸上方的面積為S上,x軸下方的
【摘要】推理與證明第二章合情推理與演繹推理第2課時演繹推理第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習在生活中,我們常常會遇到這樣一些判斷:人生病要吃藥,小明生病了,因此,小明要吃藥;摩擦生熱,冬天雙手互相摩擦,手就不冷了;任意四邊形的內(nèi)角和為360°,梯形是四邊
2024-11-17 20:06