【摘要】平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180o,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)在叫做它的對(duì)稱中心。中心對(duì)稱圖形性質(zhì):對(duì)稱中心是對(duì)應(yīng)點(diǎn)連線的中點(diǎn)想一想下面哪些圖形是中心對(duì)稱圖形?o(2)圓(1)正三角形(4)等腰梯形(3)平行四邊形(1)正三角形(
2024-11-10 05:31
【摘要】(1)這些圖形有什么共同的特點(diǎn)?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)多少度后與自身重合?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°第三個(gè)圖形的旋轉(zhuǎn)角度為90°或180°或2
2024-11-12 17:03
【摘要】中心對(duì)稱(一)一、教學(xué)目標(biāo):1、知識(shí)與技能:理解中心對(duì)稱圖形和兩個(gè)圖形關(guān)于一點(diǎn)中心對(duì)稱的概念,知道兩者之間的辯證關(guān)系,并掌握它們的性質(zhì)和判定。2、過程與方法:通過對(duì)中心對(duì)稱性質(zhì)的發(fā)現(xiàn),提高分析、歸納、猜想、證明等能力,體驗(yàn)數(shù)學(xué)猜想、化歸、圖形運(yùn)動(dòng)等數(shù)學(xué)思想。3、情感與價(jià)值觀:在觀察、操作、推理、歸納等探索過程中,發(fā)展學(xué)生合情
2024-12-08 11:02
【摘要】制作:灘頭中心學(xué)校賀東華主講:賀東華中心對(duì)稱圖形:在平面內(nèi),如果一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180度,所得圖形的像與原來的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)叫做對(duì)稱中心.下面圖形哪些是中心對(duì)稱圖形:線段等腰三角形正方形長(zhǎng)方形對(duì)稱中心對(duì)稱中心
2024-11-27 23:44
【摘要】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)(2)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?AB線段旋轉(zhuǎn)ADBC平旋轉(zhuǎn)你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠
2024-11-30 03:54
【摘要】風(fēng)車是我們小時(shí)候常見的玩具請(qǐng)觀察下面的圖形是不是我們以前學(xué)過的軸對(duì)稱圖形?若是請(qǐng)畫出它的對(duì)稱軸.它是軸對(duì)稱圖形嗎?問題:這幅圖片是否能夠通過某種圖形運(yùn)動(dòng)與自身重合呢?如圖1,點(diǎn)O是正三角形ABC的兩條高線的交點(diǎn),以點(diǎn)O為旋轉(zhuǎn)中心,把三角形逆時(shí)針旋轉(zhuǎn)180°,作出所得的像.如圖
2024-12-08 05:03
【摘要】?復(fù)習(xí)提問在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180o,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做它的對(duì)稱中心注意:中心對(duì)稱圖形是旋轉(zhuǎn)角度為1800的旋轉(zhuǎn)對(duì)稱圖形.?把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180?,如果它能夠與另一個(gè)圖形重合,那么這兩個(gè)圖形成中心對(duì)稱。?這個(gè)點(diǎn)
2024-12-08 14:07
【摘要】第2課時(shí)中心對(duì)稱與中心對(duì)稱圖形滬科版九年級(jí)下冊(cè)狀元成才路新課導(dǎo)入問題1:把圖中三角形繞定點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ABCO180°狀元成才路問題2:如圖,線段AC、BD相交于點(diǎn)O,OA=OC,
2025-03-12 21:17
【摘要】,將正方形圖案繞中心O旋轉(zhuǎn)180°后,得到的圖案是(),其中是中心對(duì)稱圖形的有(),既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是(),旋轉(zhuǎn)600后可以和原圖形重合的是()A.正六邊形B.
2024-11-10 22:54
【摘要】(1)這些圖形有什么共同的特征?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形的不同點(diǎn)在哪?分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)了多少度?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°,第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°。后三個(gè)圖形的旋轉(zhuǎn)角度都為180
2025-08-01 17:30
【摘要】回顧:這些都是什么圖形?它們都有什么性質(zhì)?一、欣賞第一組圖片:二、欣賞第二組圖片:這些圖形有什么共同的特征?你能模仿“軸對(duì)稱圖形”給“中心對(duì)稱圖形”下定義嗎?三、中心對(duì)稱圖形的定義:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。1、小明說:我發(fā)現(xiàn)
2024-11-07 02:19
【摘要】四邊形的內(nèi)角和是多少度?怎樣得到的?四邊形的外角和是多少度?四邊形的內(nèi)角和是360度,通過畫對(duì)角線把四邊形問題化歸為三角形問題來解決。四邊形的外角和是360度溫故知新我們知道邊數(shù)為3的多邊形叫三角形,邊數(shù)為4的多邊形叫四邊形.六角螺帽依此類推,邊數(shù)為5的多邊形叫五邊形,……
2024-11-18 21:40
2025-10-07 13:16
【摘要】圖案欣賞圖案欣賞生活中,我們經(jīng)常見到一些美麗的圖案,下列圖案有什么特點(diǎn)?生活中,你還見過哪些中心對(duì)稱圖案?舉例說明.O合作探索交流活動(dòng)一1.用6個(gè)全等的正方形組成中心對(duì)稱圖案(3)(1)(2)2.你能用6個(gè)全等的正方形再設(shè)計(jì)幾個(gè)中心
2024-11-19 09:52
【摘要】中心對(duì)稱與中心對(duì)稱圖形小雄中學(xué)數(shù)學(xué)組張安明一.知識(shí)回顧:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果它能與另一個(gè)圖形重合,就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱的性質(zhì):⑴關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形⑵關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中
2024-11-12 17:37