【摘要】等差數(shù)列、等比數(shù)列課時(shí)考點(diǎn)4高三數(shù)學(xué)備課組考試內(nèi)容:數(shù)列.等差數(shù)列及其通項(xiàng)公式.等差數(shù)列前n項(xiàng)和公式.等比數(shù)列及其通項(xiàng)公式.等比數(shù)列前n項(xiàng)和公式.考試要求:(1)理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).(2)理解等差數(shù)列的概念,
2025-07-25 15:40
【摘要】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時(shí)等差、等比數(shù)列的應(yīng)用要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,
2025-01-08 13:49
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時(shí),Sn=na1練習(xí):求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19
【摘要】練習(xí):設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且存在正數(shù)t,使得對(duì)所有正整數(shù)n,t與an的等差中項(xiàng)和t與Sn的等比中項(xiàng)相等.求證:數(shù)列{}為等差數(shù)列,并求{an}的通項(xiàng)公式及前n項(xiàng)和.nS等差數(shù)列與等比數(shù)列的類比????.,,11nnnTnbqbb項(xiàng)的積的前求該數(shù)
2025-05-03 02:44
【摘要】n重點(diǎn)難點(diǎn)n重點(diǎn):等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)的和及性質(zhì)n難點(diǎn):等比數(shù)列的應(yīng)用n知識(shí)歸納n1.等比數(shù)列的定義n一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列.qm-nn一、方程的思想n等比數(shù)列中有五個(gè)量a1、n、q、an、
2025-04-30 18:12
【摘要】《等差數(shù)列與等比數(shù)列》小結(jié)湖北省天門實(shí)驗(yàn)高級(jí)中學(xué)彭淑芬一、教學(xué)設(shè)計(jì)本節(jié)課內(nèi)容是在系統(tǒng)地學(xué)習(xí)完等差數(shù)列、等比數(shù)列后的一節(jié)單元小結(jié)課,小節(jié)分兩課時(shí),本節(jié)課為第一課時(shí),主要對(duì)等差數(shù)列和等比數(shù)列的定義和公式進(jìn)行小結(jié)和應(yīng)用.這一單元的知識(shí)點(diǎn)有:等差數(shù)列、等差數(shù)列的前n項(xiàng)和、等比數(shù)列、等比數(shù)列前n項(xiàng)和
2025-11-09 15:56
【摘要】狀元源、免費(fèi)提供中學(xué)高考復(fù)習(xí)各科試卷下載及高中學(xué)業(yè)水平測(cè)試各科資源下載2011年高三數(shù)學(xué)一輪復(fù)習(xí)精品導(dǎo)學(xué)案:第五章數(shù)列【知識(shí)特點(diǎn)】(1)數(shù)列是高中數(shù)學(xué)的主要內(nèi)容之一是高考的??純?nèi)容;(2)數(shù)列具有函數(shù)特征,又能構(gòu)成獨(dú)特的遞推關(guān)系,故使得數(shù)列與函數(shù)、方程、不等式等知識(shí)有較密切的聯(lián)系,因此高考命題時(shí)常將數(shù)列與函數(shù)、不等式、向量等交匯,考查學(xué)生的邏輯思維能力、運(yùn)算推理能
2025-06-07 23:16
【摘要】等比數(shù)列練習(xí)題①在等差數(shù)列中,若,則.②已知數(shù)列中,,又?jǐn)?shù)列{}是等差數(shù)列,則1.等比數(shù)列中,已知(Ⅰ)求的通項(xiàng)公式(Ⅰ)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的通項(xiàng)公式及前項(xiàng)和.:,,.(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和(Ⅰ)已知是等差數(shù)列,為前項(xiàng)和,且,,求.3.等比數(shù)列的公比為,作數(shù)列使,求證數(shù)列也是等
2025-01-15 10:21
【摘要】范文范例參考等差數(shù)列、等比數(shù)列1.(2014·山東青島二模)數(shù)列{an}為等差數(shù)列,a1,a2,a3成等比數(shù)列,a5=1,則a10=________2.(2014·河北邯鄲二模)在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=24,則該數(shù)列前13項(xiàng)的和是________3.(2014·河北唐山一模)已知等比數(shù)
2025-06-25 03:50
【摘要】《等差、等比數(shù)列》專項(xiàng)練習(xí)題1、選擇題:1.已知等差數(shù)列{an}中,a1=1,d=1,則該數(shù)列前9項(xiàng)和S9等于( )2.已知等差數(shù)列{an}的公差為正數(shù),且a3·a7=-12,a4+a6=-4,則S20為( ?。〢.180 B.-180 C.90 D.-903.已知等差數(shù)列{an}中,a2+a8=8,則該數(shù)列前9
2025-03-25 06:56
【摘要】
2025-11-03 17:10
【摘要】戶縣一中數(shù)學(xué)組許志彬10歲的高斯(德國(guó))的算法:?首項(xiàng)與末項(xiàng)的和:1+100=101?第2項(xiàng)與倒數(shù)第2項(xiàng)的和:2+99=101?第3項(xiàng)與倒數(shù)第3項(xiàng)的和:3+98=101?………………………………………?第50項(xiàng)與倒數(shù)第50項(xiàng)的和:50+51=101?∴101×(100/
2025-11-01 01:48
【摘要】等比數(shù)列的通項(xiàng)公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項(xiàng)和_______.【例2】等差數(shù)列的前項(xiàng)和為,且,則.【例3】設(shè)等比數(shù)列的前項(xiàng)和為,若,則()A. B. C. D.【例4】設(shè)是公比為的等比數(shù)列,,令,若
2025-07-25 06:33
【摘要】等比數(shù)列(一)復(fù)習(xí)引入觀察這幾個(gè)數(shù)列,看有何共同特點(diǎn)?1,2,4,8,16,…,263;;81,41,21,1?1,20,202,203,5,5,5,5,……;.①②③④復(fù)習(xí)引入觀察這幾個(gè)
2025-07-21 04:00
【摘要】《等差數(shù)列》教案 《等差數(shù)列》教案1教學(xué)目標(biāo): ?。豪斫獾炔顢?shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握并會(huì)用等差數(shù)列的通項(xiàng)公式,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用。 ...
2025-11-24 04:38