【摘要】浙江海洋學(xué)院本科畢業(yè)論文淺談“循環(huán)矩陣”的性質(zhì)及應(yīng)用畢業(yè)論文目錄摘要 IAbstract II1前言 12.循環(huán)矩陣的基本概念及性質(zhì) 3基本概念 3循環(huán)矩陣的性質(zhì) 3 73循環(huán)矩陣的推廣 10廣義循環(huán)矩陣 10循環(huán)矩陣 14反循環(huán)矩陣 17小結(jié) 21參考文獻(xiàn) 22致謝
2025-06-20 01:51
【摘要】編號(hào):審定成績(jī):重慶郵電大學(xué)矩陣分析小論文學(xué)院名稱:通信與信息工程學(xué)院學(xué)生姓名:胡曉玲專業(yè):信息與通信工程專業(yè)學(xué)號(hào):S160101047教師:安世全時(shí)間:2016
2025-06-17 22:07
【摘要】反對(duì)稱矩陣的性質(zhì)及應(yīng)用畢業(yè)論文目錄中文摘要: 1英文摘要 1 22.反對(duì)稱矩陣的基本性質(zhì) 2 2 3 6 8 8 9 10反對(duì)稱矩陣特征值的性質(zhì)及證明 10 10 11 11參考文獻(xiàn) 12反對(duì)稱矩陣的性
2025-06-24 14:50
【摘要】?jī)缌憔仃嚨男再|(zhì)及應(yīng)用嘉應(yīng)學(xué)院本科畢業(yè)論文(設(shè)計(jì))(2015屆)題目:冪零矩陣的性質(zhì)及應(yīng)用姓名:李丹學(xué)號(hào):113010022
2025-06-20 06:07
【摘要】.......矩陣的初等變換及應(yīng)用內(nèi)容摘要:矩陣是線性代數(shù)的重要研究對(duì)象。矩陣初等變換是線性代數(shù)中一種重要的計(jì)算工具,利用矩陣初等變換,可以求行列式的值,求解線性方程組,求矩陣的秩,確定向量組向量間的線性關(guān)系。一矩陣
2025-06-17 20:45
【摘要】第1頁(yè)矩陣的初等變換及其應(yīng)用摘要:本文從矩陣的初等變換的概念出發(fā),以具體實(shí)例為依據(jù),總結(jié)了矩陣初等變換在線性代數(shù)中的一些應(yīng)用.可以用來求逆矩陣、求矩陣的秩、求向量組的極大無(wú)關(guān)組、證明向量組等價(jià),判斷向量組的線性相關(guān)性、解矩陣方程和化二次型為標(biāo)準(zhǔn)形等.另外,簡(jiǎn)單介紹了矩陣的初等變換在其他方面的應(yīng)用.關(guān)鍵詞:矩陣;初等變換;應(yīng)用
2025-05-11 19:58
【摘要】淺談分塊矩陣的應(yīng)用摘要:分塊矩陣是在處理一些階數(shù)較高的矩陣時(shí)所采用的一種方法,即把一個(gè)大矩陣看成由一些小矩陣構(gòu)成,就如矩陣由數(shù)構(gòu)成一樣。特別在運(yùn)算中把這些小矩陣當(dāng)成數(shù)來處理,這就是所謂的分塊矩陣。通過這樣的一種技巧,為計(jì)算一些高階矩陣時(shí)節(jié)省時(shí)間,讓計(jì)算過程更加簡(jiǎn)潔。本文詳細(xì)、全面論述證明了矩陣的分塊在高等代數(shù)中的應(yīng)用,包括用分塊矩陣求逆矩陣的問題,用分塊矩陣求矩陣行列式,用分塊矩
2025-06-22 17:02
【摘要】XXX學(xué)校畢業(yè)論文(設(shè)計(jì))開題報(bào)告題目:對(duì)角化矩陣的應(yīng)用姓名:學(xué)院:專業(yè):
2025-06-30 20:07
【摘要】畢業(yè)論文開題報(bào)告題目:正定矩陣與廣義正定矩陣的性質(zhì)及其應(yīng)用學(xué)生姓名:時(shí)小玲學(xué)號(hào):121005217專業(yè):信息與計(jì)算科學(xué)指導(dǎo)教師:李云紅2016年04月14日開題報(bào)告填寫要求
2025-01-21 16:30
【摘要】1第七章矩陣?yán)碚撆c方法的應(yīng)用第二節(jié)投入產(chǎn)出數(shù)學(xué)模型2在經(jīng)濟(jì)活動(dòng)中分析投入多少財(cái)力、物力人力,產(chǎn)出多少社會(huì)財(cái)富是衡量經(jīng)濟(jì)效益高低的主要標(biāo)志。投入產(chǎn)出技術(shù)正是研究一個(gè)經(jīng)濟(jì)系統(tǒng)各部門間的“投入”與“產(chǎn)出”關(guān)系的數(shù)學(xué)模型,該方法最早由美國(guó)著名的經(jīng)濟(jì)學(xué)家瓦.列昂捷夫()提出,是目前比較
2025-05-11 01:09
【摘要】矩陣的秩的應(yīng)用(一)矩陣的秩在判定向量組的線性相關(guān)性方面的應(yīng)用矩陣的秩對(duì)研究向量組間是否線性相關(guān)有重要的意義,咱們可以通過把向量組轉(zhuǎn)換成矩陣的形式,通過判斷矩陣的秩的情況來間接判定向量組是相關(guān)還是無(wú)關(guān)的。那么我們首先從向量組之間的關(guān)系著手。(1).定義:若向量組中每個(gè)向量都可以由向量組線性表示,則稱向量組組能由向量組線性表出。兩個(gè)向量組若能互相線性表出,則稱這兩個(gè)向量組
2025-07-24 03:28
【摘要】第七章特征值與特征向量的數(shù)值求法習(xí)題7用冪法求下列矩陣的主特征值和主特征向量:?????????????????324262423A當(dāng)特征值有3位小數(shù)穩(wěn)定時(shí)迭代終止,再對(duì)計(jì)算結(jié)果用Aitken外推加速。用反冪法求下列矩陣模最小的特征值和對(duì)應(yīng)的特征向量:
2025-08-05 20:25
【摘要】巢湖學(xué)院2013屆本科畢業(yè)論文(設(shè)計(jì))高階對(duì)稱矩陣特征值的計(jì)算畢業(yè)論文目錄摘要 IAbstract II目錄 1引言 11關(guān)于矩陣特征值的概念 1矩陣特征值和特征向量的定義 1 2 32高階對(duì)稱矩陣特征值的計(jì)算方法 4 4 4 7 7 9QR方法 11 11 12 14 143結(jié)束語(yǔ) 17參考文
2025-06-18 13:59
【摘要】安徽建筑大學(xué)畢業(yè)設(shè)計(jì)(論文)開題報(bào)告題目矩陣特征值與特征向量求解及其應(yīng)用專業(yè)信息與計(jì)算科學(xué)姓名張浩班級(jí)10信息(2)班學(xué)號(hào)10207010233指導(dǎo)教師宮珊珊提交時(shí)間2022年3月4號(hào)
2025-01-18 23:44
【摘要】第四章矩陣的特征值和特征向量§矩陣的特征值和特征向量000,(44.1.1)nAnRAAA?????????設(shè)是階方陣,如果對(duì)于數(shù),存在非零向量使得則稱為的一個(gè)特征值,為的特定義征向量。4.
2025-07-21 03:41