【摘要】?喬伯格勾股定理應(yīng)用+41.如圖,一圓柱高8cm,底面半徑為cm,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程是( )A.6cm B.8cm C.10cm D.12cmC2.如圖,一只螞蟻從長、寬都是4,高是6的長方體紙箱的A點(diǎn)沿紙箱爬到B點(diǎn),那么它所行的最短路線的長是( ?。?題圖1題圖A.
2025-03-24 13:00
【摘要】第一篇:勾股定理的應(yīng)用說課稿 《勾股定理的應(yīng)用》說課稿 : 本課是華師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,,,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,,制定教學(xué)目標(biāo)如下:1....
2024-11-04 18:06
【摘要】第一章勾股定理勾股定理的應(yīng)用情境引入短距離.(重點(diǎn)).(重點(diǎn),難點(diǎn))學(xué)習(xí)目標(biāo)在A點(diǎn)的小狗,為了盡快吃到B點(diǎn)的香腸,它選擇AB路線,而不選擇ACB路線,難道小狗也懂?dāng)?shù)學(xué)?CBAAC+CBAB(兩點(diǎn)之間線段最短)情境引入思考:在立體圖
2024-12-28 01:48
【摘要】121教學(xué)模式數(shù)學(xué)八年級科目_________________________潘明明年級_________________________教師____________課前1分鐘交通安全教育數(shù)學(xué)
2025-04-16 23:55
【摘要】第一篇:說課稿——勾股定理的應(yīng)用 勾股定理的應(yīng)用 ——螞蟻怎么走最快(初中數(shù)學(xué)八年級) 學(xué)情分析:在本節(jié)內(nèi)容之前,學(xué)生已經(jīng)準(zhǔn)確的理解了勾股定理及其逆定理的內(nèi)容并能運(yùn)用它們解決一些數(shù)學(xué)問題。同時(shí)也...
2024-11-05 03:15
【摘要】第14章勾股定理14.2勾股定理的應(yīng)用第1課時(shí)勾股定理在生活中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識目標(biāo)勾股定理的應(yīng)用知識目標(biāo)1.經(jīng)過觀察、操作、討論、發(fā)現(xiàn),歸納理解立體圖形表面最短路徑問題的求解思路.2.在理解勾股定理及其逆定理的基礎(chǔ)上,通過分析、探究,能夠?qū)⑵渌麑?shí)際問
2025-06-12 12:08
【摘要】研究性學(xué)習(xí)設(shè)計(jì)方案研究課題名稱:正余弦定理在日常生活中的應(yīng)用設(shè)計(jì)者姓名阿不所在學(xué)校仙村中學(xué)所教年級高二研究學(xué)科數(shù)學(xué)聯(lián)系電話電子郵件一、課題背景、意義及介紹1、背景說明(怎么會(huì)想到本課題的):學(xué)習(xí)了正余弦定理后,進(jìn)行“正余弦定理的應(yīng)用”時(shí),想到除了課本給的例題,應(yīng)該還有別的實(shí)際生活中使用正余弦定理的情況。2、課題的
2025-06-26 06:19
【摘要】讀一讀:勾股定理,我們把它稱為世界第一定理。它的重要性,通過這一章的學(xué)習(xí)已深有體驗(yàn)。首先,勾股定理是數(shù)形結(jié)合的最典型的代表。其次,了解勾股定理歷史的同學(xué)知道,正是由于勾股定理的發(fā)現(xiàn),導(dǎo)致無理數(shù)的發(fā)現(xiàn),引發(fā)了數(shù)學(xué)的第一次危機(jī)。勾股定理中的公式是第一個(gè)不定方程,有許許多多的數(shù)滿足這個(gè)方程,也是有完整解答的最早的不定方程,由此由它引導(dǎo)出各式各樣的不
2024-11-06 19:33
2025-06-18 00:11
【摘要】第2課時(shí)勾股定理的逆定理的應(yīng)用滬科版·八年級數(shù)學(xué)下冊狀元成才路狀元成才路新課導(dǎo)入例2已知:在△ABC中,三條邊長分別為a=n2–1,b=2n,c=n2+1(n>1).求證:△ABC為直角三角形.狀元成才路狀元成才路新課探究
2025-03-12 12:44
【摘要】勾股定理的逆定理人教版數(shù)學(xué)八年級下冊.重點(diǎn)、互逆定理難點(diǎn)3.能靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題.重點(diǎn)學(xué)習(xí)目標(biāo)(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【摘要】課堂反饋1.如圖41-1,一圓柱高8cm,底面半徑為6πcm,一只螞蟻從點(diǎn)A沿外表面爬到點(diǎn)B處吃食,要爬行的最短路程是()A.6cmB.8cmC.10cmD.12cm圖41-1C2.如圖41-2,有兩棵樹,一棵高
2025-06-18 00:06
【摘要】第一篇:勾股定理的證明及應(yīng)用 勾股定理的證明及應(yīng)用 【重點(diǎn)】: 學(xué)習(xí)勾股定理的文化背景,欣賞歷史上經(jīng)典的勾股定理證明方法,體會(huì)其蘊(yùn)含的創(chuàng)新思維,初步運(yùn)用勾股定理分析處理具體問題 【難點(diǎn)】: ...
2024-11-04 17:50
【摘要】第一篇:勾股定理的應(yīng)用教學(xué)設(shè)計(jì) 備課人:閆治春【教學(xué)目標(biāo)】 ,體會(huì)圖形間的變化關(guān)系,發(fā)展空間觀念。,認(rèn)識勾股定理的廣泛應(yīng)用,培養(yǎng)學(xué)生解決問題的能力?!窘虒W(xué)重點(diǎn)】 探索、發(fā)現(xiàn)給定事物中隱含的勾...
2024-11-02 05:57
【摘要】勾股定理的應(yīng)用1——圖形的翻折的導(dǎo)學(xué)案一、直角三角形的折疊問題展示直角三角形紙片1.已知△ABC中,∠B=90°,AB=4,BC=3,則AC=斜邊AC邊上的高AD=折疊1:將△ABC折疊,使點(diǎn)A與B重合(如圖1),則圖中有哪些相等的線段?求BD折疊2:將△ABC折疊,使點(diǎn)A與C重合(如圖2),(1
2025-06-22 03:47