【正文】
ontrol the inputs atthe optimum settings.To do this, the Black Belt must know therelationship between the inputs and theoutputs. This module discusses linearmodeling techniques for identifying therelationship between continuous variableinputs and continuous variable outputs.A Simple Linear ModelLinear equations require continuous inputand output variables. One other assumption isthat the independent variable (input) is knownand fixed and that all of the variation is in thedependent variable (output). This is notusually the case, but often the inputs aresettings on dials or gauges or software thatseems fixed and invariable. Many times thevariation in the output is a function of theinability of the input controller to hold theinput at the same value. Collecting Data (y amp。 storage plan (who, what, when, where,etc.) The supervisor collected the data and entered it in a worksheet6. Describe the procedure and settings used to run the process Standard, constant process settings.7. Assemble and train the team. Define responsibilities. For a small project, the supervisor did all the work8. Collect the data. The data are in Minitab worksheet 9. Analyze the data Analysis is on the following slides 6. Four times a day the supervisor would go to the press and gather up theparts produced by five consecutive cycles of the press. Since each cycleproduced four parts, he would have 20 parts to measure every two hours.The supervisor kept track of the cycle and the cavity from which each partcame and wrote his twentymeasurements in an array likethis: The supervisor collected samples four times a day for five days (20 samplestotal, 20 parts per sample). Calculate the process capability and use a MultiVarichart to help determine sources of variation.A BCDES1 18 19 20 19 21S2 13 16 14 13 13S3 10 11 13 10 13S4 11 12 13 13 13Exercise: Determine Capability Using Minitab, analyze the Thick datain for process capability Remember, the specifications are: 11 177。 the Camp。R結(jié)果ANOVA表P值是變化源在統(tǒng)計(jì)上對(duì)總偏差影響是否不顯著的概率在這個(gè)例子中,部件和員工均為顯著的偏差源另外,你能用Minitab的計(jì)算器計(jì)算總的平方和嗎?這個(gè)值代表什么意思?運(yùn)用Minitab分析數(shù)據(jù)并評(píng)估量具能力StatQuality ToolsGage Ramp。也盡量打亂員工次序8,用 Minitab 作下列兩個(gè)分析StatQuality ToolsGage Ramp。量具研究偏差并不一定代表真實(shí)的工藝偏差P/TV(%Ramp。測(cè)量系統(tǒng)的指標(biāo):量具Ramp。第一步:確認(rèn)標(biāo)準(zhǔn)這一階段常被忽視。工藝能力研究連續(xù)數(shù)據(jù) 離散數(shù)據(jù) :短期還是長期?: (通常是長期): :Ⅰ ZU,ZL :Ⅱ CP Ⅰ PPMⅢ CPK Ⅱ Sigma水平ZLTⅣ Sigma水平ZST Ⅲ PPK: :Ⅰ Sigma水平ZLT Ⅰ Sigma水平ZSTⅡ PPK Ⅱ CPK定性型量具 Ramp。R 的目的:工藝評(píng)估評(píng)估你的檢查標(biāo)準(zhǔn)或工作質(zhì)量標(biāo)準(zhǔn)與客戶要求的一致性確定所有班次,機(jī)器等的檢查人員是否使用相同標(biāo)準(zhǔn)來決定合格與不合格量化檢查人員準(zhǔn)確重復(fù)其檢驗(yàn)結(jié)果的能力確定檢查人員與“已知標(biāo)準(zhǔn)”的一致性及傾向于消費(fèi)者偏差還是生產(chǎn)者偏差工藝改進(jìn)發(fā)現(xiàn)是否需要培訓(xùn),缺少工序或缺乏標(biāo)準(zhǔn)消費(fèi)者偏見員工傾向把合格產(chǎn)品判為廢品有效篩選分?jǐn)?shù)(%)在定性型Ramp。用 直線連到箭頭線上。標(biāo)準(zhǔn)限和工藝能力:工藝及產(chǎn)品標(biāo)準(zhǔn)加入X的工藝設(shè)置加入Y 的標(biāo)準(zhǔn)限 標(biāo)明未記錄的Y和可控的X測(cè)量系統(tǒng)加入量具重復(fù)性及復(fù)驗(yàn)性數(shù)據(jù)標(biāo)明須做測(cè)量系統(tǒng)分析的量具工藝能力展示RTY,DPU,CPK等的估計(jì)值標(biāo)明哪些工藝步驟數(shù)據(jù)陳舊或不完整而需做工藝能力分析觀察導(dǎo)致行為改變確認(rèn)實(shí)際工藝設(shè)置與記錄的設(shè)置相同跨班跨機(jī)器觀察工藝如何繪制工藝流程細(xì)圖:工藝流程細(xì)圖:6 Sigma 工藝流程圖要素:工藝或產(chǎn)品是輸出指標(biāo)Y和輸入指標(biāo)X標(biāo)準(zhǔn)上下限和標(biāo)準(zhǔn)控制文件所用設(shè)備/工具繪制工藝流程細(xì)圖工藝流程細(xì)圖必須依工藝流程圖而畫。確定工藝范圍:范圍至觀重要越窄越好!大量工藝步驟可能表明項(xiàng)目定義不佳或問題源于幾個(gè)項(xiàng)目問題藏于問題中若問題可以由粗略分析解決,管理層會(huì)去做繪制可執(zhí)行的工藝圖你能確認(rèn)缺陷來源嗎?我們能有意識(shí)地改變輸入指標(biāo)變量嗎?有意識(shí)的改變輸入指標(biāo)變量能直接影響輸出結(jié)果嗎?5問題的嚴(yán)重程度是什么?3問題將涉及哪些工序?1問題是什么?7,組成項(xiàng)目小組,列出小組成員。2,完成項(xiàng)目預(yù)測(cè)節(jié)省金額。這是黑帶如何完成一個(gè)項(xiàng)目的實(shí)例教程,指導(dǎo)黑帶如何更好的完成項(xiàng)目。1確定主要商業(yè)問題:b目的a循環(huán)時(shí)間c耗費(fèi)3項(xiàng)目的選擇b項(xiàng)目的標(biāo)準(zhǔn)(評(píng)估)b1減少缺陷的70%b2第一年節(jié)省 $175Kb3項(xiàng)目完成周期為4個(gè)月b4最少的資金總額b5黑帶的第一個(gè)項(xiàng)目必須滿足培訓(xùn)目標(biāo)《6 Sigma項(xiàng)目運(yùn)作實(shí)例》《定義階段》我們?cè)诙x階段做什么我們?cè)诙x階段需要做什么?1,完成項(xiàng)目陳述。???6,完成目標(biāo)陳述?!? Sigma項(xiàng)目運(yùn)作實(shí)例》《測(cè)量階段》如何進(jìn)行項(xiàng)目描述如何進(jìn)行項(xiàng)目描述: 1,目標(biāo)陳述2,Metric 圖3,月節(jié)省額如何繪制工藝流程圖:召集小組:流程圖繪制是集體努力的結(jié)果小組包括:流程負(fù)責(zé)人:項(xiàng)目結(jié)果的負(fù)責(zé)人工程部門工藝,產(chǎn)品,設(shè)計(jì)及設(shè)備生產(chǎn)部門操作員,各班次主管,培訓(xùn)員,操作班長,維修技師流程圖所需信息腦力風(fēng)暴觀察/經(jīng)歷操作手冊(cè)工程標(biāo)準(zhǔn),工作指示六大方面(人,機(jī),方法,測(cè)量,材料,環(huán)境)文件記錄/確認(rèn):文件記錄的工藝流程首先繪制記錄下來的工藝加入并標(biāo)明隱形工廠步驟當(dāng)所有步驟展示出來后,流程圖就屬于實(shí)際工藝確認(rèn)流程圖的準(zhǔn)確性至關(guān)重要項(xiàng)目組必須花時(shí)間觀察工藝秘密進(jìn)行。工藝流程細(xì)圖程序:1,從流程圖中列出工藝步驟2,加入下列內(nèi)容輸出指標(biāo)輸出指標(biāo)標(biāo)準(zhǔn),若存在輸入指標(biāo)輸入指標(biāo)標(biāo)準(zhǔn),若存在工藝能力或量具能力指標(biāo)所用設(shè)備3,標(biāo)明隱形工廠步驟4,標(biāo)明各步驟屬于增值性(VA)或非增值性(NVA)5,標(biāo)明各步驟屬于可控性的(C)或噪音性的(N)6,確認(rèn)各設(shè)備的輸入指標(biāo)設(shè)置7,確認(rèn)流程圖準(zhǔn)確性8,必要時(shí)更改及更新流程3. 在箭頭上下寫上傳統(tǒng)因素類型名稱*或你懷疑是的類型名稱。*6mman, machine ,method, measurement, mother nature (environment)(6M:人員,機(jī)器,測(cè)量方法,原材料,環(huán)境)R檢驗(yàn)過程中,檢驗(yàn)員前后一致的比例定性數(shù)據(jù)定性(合格/不合格)數(shù)據(jù),可用來做記錄和分析定性型測(cè)量系統(tǒng)把每個(gè)部件與標(biāo)準(zhǔn)進(jìn)行比較,從而決定部件是否符合標(biāo)準(zhǔn)的測(cè)量系統(tǒng)。使用定性型量具 Ramp。R試驗(yàn),核實(shí)調(diào)整后的有效性標(biāo)準(zhǔn)化分?jǐn)?shù)如果員工時(shí)常與標(biāo)準(zhǔn)不一致,則需要改變測(cè)量系統(tǒng)(或局部標(biāo)準(zhǔn))工藝能力分析:為何測(cè)量工藝能力?使我們根據(jù)數(shù)據(jù)分配資源! (這可不常見!)缺陷率得以量化確認(rèn)可以改進(jìn)機(jī)會(huì)分析工藝能力可使組織預(yù)測(cè)其所有產(chǎn)品和服務(wù)的真實(shí)質(zhì)量水平確認(rèn)工藝發(fā)生問題的本質(zhì)居中程度或分散度設(shè)備室溫度和在最小飽和蒸汽濃度的周期時(shí)間決定殺菌程度在整個(gè)設(shè)備室維持前后一致的溫度范圍很重要。R 模型測(cè)量系統(tǒng) μ總和=μ工藝+Δμ測(cè)量系統(tǒng)偏離度: 觀察值=實(shí)際真實(shí)值+測(cè)量偏移通過“校準(zhǔn)計(jì)劃” Δ 測(cè)量偏移來評(píng)估 真實(shí)值 測(cè)量值(準(zhǔn)確度)測(cè)量系統(tǒng) σ2 總合=σ2工藝+σ2測(cè)量系統(tǒng)偏離度: 觀察的偏差=工藝的偏差+測(cè)量的偏差通過“校準(zhǔn)計(jì)劃”來評(píng)估 真實(shí)值 測(cè)量值(準(zhǔn)確度)R)6 Sigma 首選測(cè)量量具與量具研究偏差相比其性能如何最適合進(jìn)行工藝改進(jìn)的評(píng)估使用時(shí)應(yīng)小心。R 使用方法說明:1,校準(zhǔn)量具或確認(rèn)最近校準(zhǔn)仍然有效2,收集10個(gè)代表工藝偏差全部范圍的樣本3,從每日使用這種測(cè)量方法的員工中選出檢驗(yàn)員4,運(yùn)用 ClacMake Patterned Data 準(zhǔn)備量具研究數(shù)據(jù)表5,讓員工測(cè)量所有無標(biāo)識(shí),隨機(jī)次序的樣本6,分別讓另外其他員工測(cè)量所有無標(biāo)識(shí),隨機(jī)次序的樣本7,重復(fù)第五步及第六步循環(huán)三次。 中。Minitab 默認(rèn)計(jì)算P/SV量具Ramp。E matrix team. May need to add a rep from quality, a supplier, reliability When should the FMEA be constructed? After the process map amp。 DetectionFMEA Examples Plating ExampleAn aerospace plating pany was shipping product to itscustomers with nickel plating that was too thin. Parts were failingcorrosion testing at the customer. Shipping ExampleThe shipping department of an electronics pany is unable toship an assembly without its clam shell protective packaging. Thiscauses occasional late shipments to the customer. In the following examples, a single line from the FMEA is used as anillustration for each of the above examples. 圖形技術(shù)分析:Graphical MethodsProcess Variation Noise variation from discrete inputs Different operators, machines, setups Different days, shifts Di