【正文】
蒸發(fā)溫度對(duì)于節(jié)流損失的影響蒸發(fā)溫度對(duì)于節(jié)流損失的影響如圖16所示。然后基于實(shí)驗(yàn)數(shù)據(jù),我們分析了跨臨界循環(huán)的節(jié)流損失、節(jié)流損失對(duì)于系統(tǒng)COP的影響以及工況對(duì)于節(jié)流損失的影響。以上,蒸發(fā)器側(cè)進(jìn)氣口參數(shù)的改變應(yīng)當(dāng)基于系統(tǒng)舒適性及低噪音等方面考慮。(3)雖然內(nèi)部熱交換器可以降低CO2跨臨界循環(huán)的節(jié)流損失,但仍會(huì)有5%的虧損。采用強(qiáng)化傳熱翅片管表面和優(yōu)化管路徑的安排,將會(huì)使有效途徑。7:18.[4] Cho H, Ryu C, Kim Y. Cooling performance of a variable speed CO2 cycle with an electronic expansion valve and internal heat exchanger. Int J Refrig 2007。 2000. p. 59–65.[8] White SD, Yarrall MG, Cleland DJ, Hedley RA. Modeling the performance of a transcritical CO2 heat pump for high temperature heating. Int J Refrig 2002。 2002. p. 3–10.[12] Girotto S, Minetto S, Neksa P. Commercial refrigeration system using CO2 as the refrigerant. Int J Refrig 2004。44(20):3267–78.[16] Fartaj A, Ting DSK, Yang WW. Second law analysis of the transcritical CO2 refrigeration cycle. Energy Convers Manage 2004。28(8):1225–37.[20] Madsen KB, Poulsen CS, Wiesenfarth M. Study of capillary tubes in a transcritical CO2 refrigeration system. Int J Refrig 2005。21(7):577–89.[24] Yang JL, Ma YT, Li MX, Guan HQ. Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander. Energy 2005。48(9):2491–501.[22] Agrawal N, Bhattacharyya S. Parametric study of a capillary tubesuction line heat exchanger in a transcritical CO2 heat pump cycle. Energy Convers Manage 2008。46(13–14):2053–67.[18] Chen Y, Gu JJ. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. Int J Refrig 2005。31(3):516–24.[14] Samer S. Theoretical evaluation of transcritical CO2 systems in supermarket refrigeration. Part II: system modifications and parisons of different solutions. Int J Refrig 2008。25(4):421–7.[10] Richter MR, Song SM, Yin JM, Kim HM, Bullard CW, Hrnjak PS. Experimental results of transcritical CO2 heat pump for residential application. Energy 2003。21(3):172–9.[6] Hwang Y, Radermacher R. Experimental evaluation of CO2 water heater. In: Proceeding of IIR Gustav Lorentzen conference on natural working fluids, Oslo, Norway。16(1):4–12.[2] Yin J, Park YC, Boewe D, McEnaney R, Bullard CW, Hrnjak PS. Experimental and model parison of transcritical CO2 versus R134a and R410 system performance. In: Proceeding of IIR Gustav Lorentzen conference on natural working fluids 98, Oslo, Norw