【摘要】高中數(shù)學(xué)必修2立體幾何測試題及答案(一)一,選擇(共80分,每小題4分)1,三個(gè)平面可將空間分成n個(gè)部分,n的取值為()A,4;B,4,6;C,4,6,7;D,4,6,7,8。2,兩條不相交的空間直線a、b,必存在平面α,使得()A,aα、bα;B,aα、b∥α;C,a⊥α、b⊥α;D,aα、b⊥α。3,若p是兩條異面直線a、b外的任意一點(diǎn),則()A,過點(diǎn)
2025-06-18 14:12
【摘要】高三數(shù)學(xué)立體幾何復(fù)習(xí)一、填空題1.分別在兩個(gè)平行平面內(nèi)的兩條直線間的位置關(guān)系不可能為①平行②相交③異面④垂直【答案】②【解析】兩平行平面沒有公共點(diǎn),所以兩直線沒有公共點(diǎn),所以兩直線不可能相交2.已知圓錐的母線長
2025-06-24 15:29
【摘要】立體幾何中的向量方法1.(2012年高考(重慶理))設(shè)四面體的六條棱的長分別為1,1,1,1,和,且長為的棱與長為的棱異面,則的取值范圍是 ( ?。〢. B. C. D.[解析]以O(shè)為原點(diǎn),分別以O(shè)B、OC、OA所在直線為x、y、z軸,則,A,2.(2012年高考(陜西理))如圖,在空間直角坐標(biāo)系中有直三棱柱,,則直線與直線夾角的余弦值為 ( ?。〢.
2025-04-17 13:06
【摘要】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-08 14:05
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2025-10-31 01:53
【摘要】立體幾何中的向量方法—求空間角?立體幾何這一考點(diǎn)在廣東高考試卷中占有很大比例,11年19分12年18分13年24分。這些題目也是我們?nèi)幦×η鬂M分的題目。主要考查三視圖問題,點(diǎn)線面位置關(guān)系問題,還有就是大題.大題主要有垂直、平行、角度、體積。對于角度問題,一直是一個(gè)難點(diǎn)。大體有兩種求法,一類是傳統(tǒng)方法,一做(找)二證三求,另一種方
2025-06-16 12:13
【摘要】利用空間向量解決立體幾何問題數(shù)學(xué)專題二學(xué)習(xí)提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2025-11-16 22:52
【摘要】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角的問題。數(shù)量積:夾角公式:異面直線所成角的范圍:思考:結(jié)論:題型
2025-11-02 02:54
【摘要】空間向量坐標(biāo)法---解決立體幾何問題一.建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,能求點(diǎn)的坐標(biāo);1、三條直線交于一點(diǎn)且兩兩垂直;方便求出各點(diǎn)的坐標(biāo)。2、如何求出點(diǎn)的坐標(biāo):先求線段的長度(特別是軸上線段):由已知條件可全部求出來;若不能,則可先設(shè)出來。(1)軸上的點(diǎn)--------X軸--(a,0,0),y軸--(0,b,0),z軸--(0,0,c)(2)三個(gè)坐標(biāo)面上的點(diǎn)-
2025-03-25 06:42
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】1立體幾何測試卷時(shí)量:90分鐘滿分:100分班級學(xué)號(hào)姓名一、選擇題(4’×10=40’)1.一條直線與一個(gè)平面所成的角等于3?,另一直線與這個(gè)平面所成的角是6?.則這兩條直線的位置關(guān)系()A.必定相
2025-01-09 16:30
【摘要】《空間向量在立體幾何中的應(yīng)用》教學(xué)設(shè)計(jì)(一)知識(shí)與技能、線面角、二面角的余弦值;.(二)過程與方法、線面角、二面角的余弦值的過程;.(三)情感態(tài)度與價(jià)值觀、線面角、二面角的余弦值,用空間向量解決平行與垂直問題的過程,讓學(xué)生體會(huì)幾何問題代數(shù)化,領(lǐng)悟解析幾何的思想;;、運(yùn)用知識(shí)的能力.、難點(diǎn)重點(diǎn):用空間向量求線線角、線面角、二面角的余弦值及解決平行
2025-04-17 08:11
【摘要】空間向量與立體幾何知識(shí)點(diǎn)歸納總結(jié)一.知識(shí)要點(diǎn)。1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量。(2)向量具有平移不變性2.空間向量的運(yùn)算。定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)合
2025-06-23 03:52
【摘要】空間向量練習(xí)題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點(diǎn),坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因?yàn)椋?/span>
2025-06-27 22:52
【摘要】用空間向量解立體幾何題型與方法一.平行垂直問題基礎(chǔ)知識(shí)直線l的方向向量為a=(a1,b1,c1).平面α,β的法向量u=(a3,b3,c3),v=(a4,b4,c4)(1)線面平行:l∥α?a⊥u?a·u=0?a1a3+b1b3+c1c3=0(2)線面垂直:l⊥α?a∥u?a=ku?a1=ka3,b1=kb3,c1=kc3(3)面面平行:α∥β?u∥v?u=kv?a
2025-07-24 22:36