【摘要】高中圓的基本概念與點圓關系知識點與答案解析第一節(jié)圓的基本概念:(圓心,半徑為)例1寫出下列方程表示的圓的圓心和半徑(1)x2+(y+3)2=2;(2)(x+2)2+(y–1)2=a2(a≠0)例2圓心在直線x–2y–3=0上,且過A(2,–3),B(–2,–5),求圓的方程.例3已知三點A(3,
2025-06-27 16:33
【摘要】《經(jīng)濟生活》主觀題知識歸納一、價格理論:1.影響價格的因素(或價格變動的原因)1)價值決定價格:2)供求影響價格:3)紙幣的發(fā)行量:4)市場的缺陷:5)國家經(jīng)濟政策:6)市場流通秩序:7)?經(jīng)濟全球化:8)人們的購物心理2.價格變動對經(jīng)濟的影響:1)價格變動對生活消費(或需
2025-06-22 05:46
【摘要】資料《圓》題型分類資料一.圓的有關概念::①直徑是弦②弦是直徑③半圓是弧,但弧不一定是半圓④長度相等的兩條弧是等弧,正確的命題有()A.1個2.下列命題是假命題的是()A.直徑是圓最長的弦B.長度相等的弧是等弧C.在
2025-07-23 17:44
【摘要】乘法公式的復習一、平方差公式(a+b)(a-b)=a2-b2歸納小結公式的變式,準確靈活運用公式:①位置變化,(x+y)(-y+x)=x2-y2②符號變化,(-x+y)(-x-y)=(-x)2-y2=x2-y2③指數(shù)變化,(x2+y2)(x2-y2)=x4-y4④系數(shù)變化,(2a+b)(2a-b)=4a2-b2⑤換式變化,[xy+(z+m)
2025-06-28 14:03
【摘要】高考數(shù)學復習——公式及知識點匯總一、函數(shù)、導數(shù)1、函數(shù)的單調性(1)設那么上是增函數(shù);上是減函數(shù).(2)設函數(shù)在某個區(qū)間內可導,若,則為增函數(shù);若,則為減函數(shù).2、函數(shù)的奇偶性對于定義域內任意的,都有,則是偶函數(shù);對于定義域內任意的,都有,則是奇函數(shù)。奇函數(shù)的圖象關于原點對稱,偶函數(shù)的圖象關于y軸對稱。3、函數(shù)在點處的導數(shù)的幾何意義函數(shù)
2025-04-17 13:01
【摘要】初中數(shù)學公式定理知識點復習 初中三年級數(shù)學公式定理 1過兩點有且只有一條直線 2兩點之間線段最短 3同角或等角的補角相等 4同角或等角的余角相等 5過一點有且只...
2025-11-24 22:29
【摘要】高考數(shù)學必備知識點及公式總結 高考數(shù)學必備知識點及公式總結 1高中數(shù)學必備知識點 ,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。 中元素各表示什么? ...
2025-11-28 02:35
【摘要】..圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5
2025-08-05 04:44
【摘要】圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5cm,求⊙O的半徑。分析:⊙
2025-06-22 15:49
【摘要】《直線和圓》題型總結班級:高二(19)班學號:50姓名:張志飛1.直線的傾斜角:(1)定義:在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,那么就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;(2)傾斜角的范圍:。例題:(1)直線的傾斜角的范圍是____(答:);(2)過點的
2025-07-22 17:00
【摘要】湖州市弘大培訓學校圓與方程1.圓的標準方程:以點為圓心,為半徑的圓的標準方程是.特例:圓心在坐標原點,半徑為的圓的方程是:.2.點與圓的位置關系:(1).設點到圓心的距離為d,圓半徑為r:d<r;d=r;d>r(2).給定點及圓.①在圓內②在圓上③在圓外(3)涉及最值:1
2025-06-19 01:54
【摘要】初中數(shù)學——《圓》【知識結構】1、圓及與圓相關的概念二、圓的對稱性(1)圓既是軸對稱圖形,又是中心對稱圖形。(2)對稱軸——直徑所在的直線,對稱中心——圓心。三、垂徑定理垂徑定理:垂直于弦的直徑平分弦且平分弦所對的弧。推論1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條??;
2025-08-11 00:30
【摘要】初三數(shù)學圓知識點總結初三數(shù)學圓知識點總結一、本章知識框架二、本章重點1.圓的定義:(1)線段OA繞著它的一個端點O旋轉一周,另一個端點A所形成的封閉曲線,叫做圓.(2)圓是到定點的距離等于定長的點的集合.2.判定一個點P是否在⊙O上.設⊙O的半徑為R,OP=d,則有dr點P在⊙O外;d=r點P在⊙O上;dr點P在⊙O
2025-08-04 18:52
【摘要】......圓考點一、圓的相關概念1、圓的定義2、圓的幾何表示:以點O為圓心的圓記作“⊙O”,讀作“圓O”考點二、弦、弧等與圓有關的定義(1)弦連接圓上任意兩點的線段
2025-06-22 15:52
【摘要】第六課圓知識點:1、半徑:連接圓心和圓上任意一點的線段是半徑。(同一個圓內,半徑有無數(shù)條,而且都相等。)2、直徑:通過圓心并且兩端都在圓上的線段是直徑。(同一個圓內,直徑有無數(shù)條,而且都相等。)3、同一個圓內d與r的關系:d=2r。4、圓是軸對稱圖形,有無數(shù)條對稱軸。(過直徑的直線都是圓的對稱軸。)練習:。半徑直徑9
2025-07-23 21:16