freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

《投入產(chǎn)出分析方法》ppt課件(文件)

2025-05-17 02:16 上一頁面

下一頁面
 

【正文】 npqpqpqnpqpqpq, ??????????????????????? 1 1qjqjqjqjmpnipqij xmvxa ???? ?? ??????????????????????? ?? ?? ?? ?? ?? ?mpnipqinmpnipqimpnipqiqaaaB1 11 121 11000000??????????????????????mmmmmmAAAAAAAAAA??????212222111211???????????????mBBBB?000?000??21??????如果再引入分塊矩陣 則矩陣表達(dá)式的簡潔形式為 引入列向量 ????????????????????????????????????????????????????????????mmm MMMMVVVVXXXX????2121m0201021,YYYY, XYAX ??XMVXB ????三 資源利用與環(huán)境保護(hù)中的投入產(chǎn)出分析 ?基于投入產(chǎn)出分析的資源利用模型 ?環(huán)境保護(hù)的投入產(chǎn)出分析 對資源利用問題的研究,通常忽視了資源利用過程中各個產(chǎn)業(yè)部門之間的相互聯(lián)系。改造以后的投入產(chǎn)出表如表 。 可以從如下幾個方面考慮選擇其一 。 結(jié)合投入產(chǎn)出分析 , 這 3類約束可以用矩陣形式表示為 此外,還可以考慮其他約束條件 . 。 假設(shè)甲 、 乙兩個部門的計(jì)劃總產(chǎn)量分別為 x1和 x2, 最終產(chǎn)品量分別 y1為和y2。 1max f 為了回答問題( 2),只要將上述模型中的目標(biāo)函數(shù) 換為: 。該目標(biāo)規(guī)劃模型的目標(biāo)函數(shù)為 式中: 、 分別表示對應(yīng)于第 1個目標(biāo)的正、負(fù)偏差變量; 、 分別表示對應(yīng)于第 2個目標(biāo)的正、負(fù)偏差變量。 在 20世紀(jì) 70年代初期 , 列昂捷夫曾運(yùn)用投入產(chǎn)出模型 , 對環(huán)境污染與治理問題作了研究 。即 ) 2 1( 11 nixyEx iimjijnjij , ????? ????) 2 1( 11miQRFP iimjijnjij , ????? ???? 這表明總產(chǎn)品 Xi除去最終產(chǎn)品 Yi以外 , 其余則用作產(chǎn)品生產(chǎn)的消耗和消除污染部門的消耗;污染物來自生產(chǎn)領(lǐng)域 , 最終需求領(lǐng)域 , 以及消除污染部門本身 。 ① 生產(chǎn)部門費(fèi)用構(gòu)成。 表 消除污染對各部門產(chǎn)品價格的影響 從表 ,中期消除污染對各部門產(chǎn)品價格的影響的百分率比長期的小,這是因?yàn)橹衅诟鞣N污染物的消除比例較長期低的緣故。 1953年 , 列昂惕夫與其他經(jīng)濟(jì)學(xué)家合作 , 出版了 《 美國經(jīng)濟(jì)結(jié)構(gòu)研究 》 一書 , 進(jìn)一步闡述了投入產(chǎn)出分析的基本原理及發(fā)展 。在以下幾方面其作用尤為巨大: ①為編制經(jīng)濟(jì)計(jì)劃,特別是為編制中、長期計(jì)劃提供依據(jù)。 。 ③研究經(jīng)濟(jì)政策對經(jīng)濟(jì)生活的影響。 1974年 4月 , 鑒于列昂惕夫是唯一的無可爭議的投入產(chǎn)出方法的創(chuàng)始人 , 他被授予 1973年度諾貝爾經(jīng)濟(jì)科學(xué)獎 。1936年 , 列昂惕夫在哈佛大學(xué)工作時發(fā)表了 《 美國經(jīng)濟(jì)制度中投入產(chǎn)出的數(shù)量關(guān)系 》 一文 , 闡述了有關(guān)第一張美國 1919年投入產(chǎn)出表的編制工作 、 投入產(chǎn)出理論和相應(yīng)的數(shù)學(xué)模型 , 以及資料來源和計(jì)算方法 。新平衡關(guān)系式為 ) 2 1( nii , ???) 2 1( mii , ???) 2 1( )1()1(11njxmvdPxjjjjjmiijiiniiji, ????????? ????????由兩組平衡關(guān)系可以得到 上式兩端同除以 xj得 矩陣形式 ) 2 1( 11njxPx jjmiijiiniiji , ???? ????????) 2 1( 11njPa jmiijiiniiji , ???? ??????????? ??? ?TT PA? ?Tn???? , ? 21? ? ?TmΦ ??? , ? 21? ② 消除污染部門的費(fèi)用 。 ???????????mjniSEejijij ,?? 2 1 2 1 ???????????njmixPpjijij ,?? 2 1 2 1 ? ?mjiSFfjijij , ? 2 1 ??引入以下系數(shù)矩陣: 生產(chǎn)部門的直接消耗系數(shù)矩陣 消除污染部門直接消耗系數(shù)矩陣 ?????????????nnnnnnaaaaaaaaaA??????212222111211?????????????nmnnmmeeeeeeeeeE??????212222111211生產(chǎn)部門污染物產(chǎn)生系數(shù)矩陣 消除污染部門污染物產(chǎn)生系數(shù)矩陣 ?????????????mnmmnnpppppppppP??????212222111211?????????????mmmmmmfffffffffF??????212222111211 以及 矩陣形式 如果進(jìn)一步以 表示第 i種污染物的消除比例,則 XYESAX ???QRFSPX ???)10( ?? ii ??) 2 1( miQS iii , ??? ?? ?TnxxxX , ? 21? ? ?TnyyyY , ? 21?? ?TmSSSS , ? 21? ? ?TmRRRR , ? 21?? ?Tm , ? 21?作對角矩陣 那么,向量 S和 Q就有如下關(guān)系 。 在表 , 除了通
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1