【摘要】關于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;(3)求弦中點的坐標問題。其解法有代點相減法、設而不求法、參數(shù)法、待定系數(shù)法及中心對稱變換法等。一、求中點弦所在直線方程問題例1、過橢圓內一點M(2,1)引一條弦,使弦被
2025-07-26 08:15
【摘要】平面向量的實際背景及基本概念平面向量的線性運算——教材解讀山東劉乃東一、要點精講1.向量的有關概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來表示,或用有向線段的起點與終點的大寫字母表示,如。向量的大小,即向量的模(長度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個向量不能比較大小。(2)零向量:長度為零的向量
2025-08-21 16:13
【摘要】2013年全國高考數(shù)學試題分類解析——圓錐曲線部分1.(安徽理科第2題、文科第3題)雙曲線的實軸長是(A)2(B)(C)4(D)4答案:C解:雙曲線的方程可化為,則所以。2.(安徽理科第21題)設,點的坐標為(1,1),點在拋物線上運動,點滿足,經(jīng)過點與軸垂直的直線交拋物線于點,點滿足,求點的軌跡方程。解:
2025-08-17 04:16
【摘要】數(shù)學第十一課第十一講平面向量所以同理得又,設的夾角為,則故夾角為,已知與垂直,與平行,則與的夾角大小是。解:由,得,解得,又由//,得解得。又,故與的夾角為。例題2:選擇題:(1)平面直角坐標系中,為坐標原點,已知兩點若點滿足其中且,則點的軌跡方程為()A.,B.,C.,D.。解:列出關于的關系等式,即且,消去選D。(2)O
【摘要】我的宗旨:授人以漁QQ1294383109歡迎互相交流訪問我的空間第二講(文)三角函數(shù)與平面向量第一節(jié)三角函數(shù)的化簡、求值及證明三角函數(shù)的化簡、求值及證明涉及恒等變換,而三角函數(shù)的恒等變換是歷年高考命題的熱
2025-08-14 05:15
【摘要】2014高考數(shù)學一輪復習單元練習--平面向量I卷一、選擇題1.設向量a,b滿足|a|=|b|=1,a·b=-,則|a+2b|=( )A. B.C. D.【答案】B2.已知A、B、C是不在同一直線上的三點,O是平面ABC內的一定點,P是平面ABC內的一動點,若(λ∈[0,+∞)),則點P的軌跡一定過△ABC的()A.外心 B.內心 C.重心
2025-01-14 14:43
【摘要】遼寧高考數(shù)學命題教研小組24小時咨詢電話:13591657580(姚老師)12022高考題分類匯編——圓錐曲線一、選擇題1.(2022湖南文)5.設拋物線28yx?上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是A.4B.6C.8
2025-01-09 16:08
【摘要】用心愛心專心第八章平面向量知識網(wǎng)絡第1講向量的概念與線性運算★知識梳理★1.平面向量的有關概念:(1)向量的定義:既有____大小又有方向_________的量叫做向量.(2)表示方法:用有向線段來表示向量.有向線段的____長度_____表示向量的大小,用
2025-01-09 14:49
【摘要】2012高考試題分類匯編:8:圓錐曲線一、選擇題1.【2012高考新課標文4】設是橢圓的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為() 【答案】C【解析】因為是底角為的等腰三角形,則有,,因為,所以,,所以,即,所以,即,所以橢圓的離心率為,選C.2.【2012高考新課標文10】等軸
2025-08-08 22:14
【摘要】......學習參考 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13
【摘要】-1-2020高考試題分類匯編:8:圓錐曲線一、選擇題1.【2020高考新課標文4】設12FF是橢圓22:1(0)xyEabab????的左、右焦點,P為直線32ax?上一點,12PFF?是底角為30的等腰三角形,則E的離心率為()()A12()B2
2025-10-25 07:20
【摘要】......橢圓與雙曲線的對偶性質--(必背的經(jīng)典結論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,
2025-04-17 13:07
【摘要】第-1-頁共27頁2020高考試題分類匯編:圓錐曲線一、選擇題1.【2020高考新課標文4】設12FF是橢圓22:1(0)xyEabab????的左、右焦點,P為直線32ax?上一點,12PFF?是底角為30的等腰三角形,則E的離心率為()()A12
2025-10-25 05:52
【摘要】2016年高考數(shù)學理試題分類匯編圓錐曲線一、選擇題1、(2016年四川高考)設O為坐標原點,P是以F為焦點的拋物線上任意一點,M是線段PF上的點,且=2,則直線OM的斜率的最大值為(A)(B)(C)(D)1【答案】C2、(2016年天津高考)已知雙曲線(b0),以原點為圓心,雙曲線的實半軸長為半徑長的圓與雙曲線的兩條漸近線相交于
2025-01-14 14:45
【摘要】WORD資料可編輯高考二輪復習專項:圓錐曲線大題集1.如圖,直線l1與l2是同一平面內兩條互相垂直的直線,交點是A,點B、D在直線l1上(B、D位于點A右側),且|AB|=4,|AD|=1,M是該平面上的一個動點,M在l1上的射影點是N,且|BN|=2|DM|.
2025-07-25 01:24