【正文】
1? ,c o s xdxduu ??? .si n xycex ?13 ?? xyxd ydx s i n)( c o xyxxd yd s e c)( t a n. ??解 一階線性方程?? ?????? ????? ? cdxexey dxxdxx t a nt a n s e c?? ?cdxexe xx ??? ? c o slnc o sln s e c? ?cdxxx ??? ? 2s e cc o s? ?cxx ??? t anc os xcx c o ss i n ??7 334 yxxyxd yd ??.例)(. 伯努利方程解323 xyxxd ydy ?? ??xdydyzyz 32 2 ?? ???? 則令 ,322 xxzz ??????????? ?????? ? ? dxexcez x d xx d x 232 2?????? ???? ? ? dxexce xx 22 32? ??????? ??? ? 1222 xece xx122 ??? xce xyyyeeeyDD011???dxex x? ??? 232? ???????? ???? dyye yxy xdxdy22)( 1??? ye y? ?122 ?? ? xe x21y? )(隱式通解8 05 3223 ???? dyyyxdxxyx )()(.例,. 3223 yyxQxyxP ????解,xQxyyP ?????? 2 .原方程是全微分方程?? ?? ),( ),(),( yx Qd yPd xyxu 00? ???? ),( ),( )()(yx dyyyxdxxyx00 3223),( 00 ),( 0x),( yx?? ???? yx dyyyxdxx 0 320 3 0 )()(4224 412141 yyxx ???cyyxx ??? 4224 412141.為原方程的隱式通解9 .)()(.又解例 05 3223 ???? dyyyxdxxyx3223yyxxyxxdyd????33221xyxyxy????齊次方程?., xd udxuxd yduxyxyu ???? 則設(shè),321 uu uxd udxu ?????? ,uuuu uuxd udx 23 42 121 ???? ????,xxduudu ??? 21 ,lnln)l n ( cxu ???? 2121,lnln)l n ( cxu 221 2 ???,)( cux 21 22 ?? .222 cyx ??10 05 3223 ???? dyyyxdxxyx )()(.例02222 ???? dyyxydxyxx )()(,事實上022 ??? )()( y dyxdxyx)( 1022 ?? yx)( 20?? y dyxdx或cyx ??? 22 21212 )()( 3222 cyx ??或.)()( 中式已包含在此隱式解 3111 :, 要熟悉幾個微分算式尋找積分因子)()( 1xdyy dxyxd ??)( 42xy d xxdyxyd ????????)( 52yxdyy d xyxd ????????)(ln 6xy y d xxdyxyd ????????)(a r c t a n 722yxy d xxdyxyd?????????)()( l n 2xy xdyy d xxyd ??)( 31 22yxxdyy d xxyd?????????12 026 2 ??? dxyxy 022 ??? dxyyxdxd x )(.解dxyyxdxd x 22 ?? )(222xdxyyxdxdx ?? )(?????????xydxd 2)( l n.ln 為原方程的隱式通解cxyx ???213 ,)()s i n(. 與路徑無關(guān)已知例 ? ??L dyx xfdxxxyx1? ? .)(,)( xffxf 求是可微函數(shù)且 02 ??