【摘要】線代框架之特征值與特征向量:nnA???????設是階矩陣,如果存在一個數(shù)及非零的維列向量,使得A=成立,則稱是矩陣A的一個特征值,稱非零向量是矩陣A屬于?特征值的一個特征向量。A的特征矩陣EA??.A的特征多項式()E
2025-01-06 22:10
【摘要】第1頁數(shù)學(理)新課標·高考二輪總復習第四部分選考內容第2頁數(shù)學(理)新課標·高考二輪總復習第三十一講行列式與矩陣(選修4-2)第3頁數(shù)學(理)新課標·高考二輪總復習.2.求常
2025-05-07 00:51
【摘要】第一章行列式與矩陣行列式是代數(shù)學中一個重要的工具,利用它可以用來判斷一個n階矩陣是否可逆;可以導出一個矩陣的逆矩陣公式以及著名的克拉姆法則。這一章我們先給出二、三階行列式的定義,在此基礎上歸納出一般n階行列式的定義,然后討論行列式的基本性質及其應用?!煨辛惺郊捌湫再|在數(shù)學發(fā)展史上,行列式是通過解線
2025-01-13 22:26
【摘要】線代框架之特征值與特征向量:的特征矩陣.的特征多項式.的特征方程計算特征值的方法:(1)先由求矩陣A的特征值(共n個即幾階矩陣有幾個,注意:算出的值用檢驗,以免計算錯誤)(2)再由求基礎解系,即矩陣A屬于特征值的線性無關的特征向量。性質:(1)(2)(3)。(4)常用結論:(1)注意,上三角,下三角,對角
2025-08-23 14:30
【摘要】?TDnnaaa?2211行列式稱為行列式的轉置行列式.TDD記nnaaa?2211???nnaaa21122112nnaaa?D???2121nnaaa??nnaaa2112一、行列式
2025-05-12 10:05
【摘要】二階行列式與逆矩陣選修4-2矩陣與變換2022年6月4日星期六復習:A,如果存在一個二階矩陣B,使得AB=
2025-05-07 06:31
【摘要】上頁下頁返回第二節(jié)矩陣的計算一、矩陣的加法二、數(shù)與矩陣相乘三、矩陣與矩陣相乘四、矩陣轉置五、方陣的行列式六、共軛矩陣七、矩陣的應用上頁
2025-08-05 10:13
【摘要】第矩陣的運算一.矩陣的加法二.數(shù)與矩陣的乘法三.矩陣與矩陣的乘法四.矩陣的其它運算五.小結思考題1、定義?????????????????????????mnmnmmmmnnnnbababababababababaB
2025-08-05 10:12
【摘要】1、行列式1.行列式共有個元素,展開后有項,可分解為行列式;2.代數(shù)余子式的性質:①、和的大小無關;②、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;③、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3.代數(shù)余子式和余子式的關系:4.設行列式:
2025-05-16 07:31
【摘要】行列式二階行列式的運算???????.,222111cybxacybxa,12211221bababcbcx???,12211221babacacay???用加減消元法解方程組得)0(1221??baba,DDxx?,DDyy??
2025-05-12 14:27
【摘要】第一章行列式?二階與三階行列式?排列?n階行列式?n階行列式的性質?行列式按一行(列)展開?Cramer法則本章內容?行列式概念的形成?行列式的基本性質和計算方法?利用行列式來解線性方程組山東理工大學
2024-12-07 18:39
【摘要】.......說明:黃色高亮部分是必做題目,其他為選作第一章行列式專業(yè)班姓名學號第一節(jié)行
2025-03-25 07:38
【摘要】§4行列式按行(列)展開一、余子式與代數(shù)余子式二、行列式按行(列)展開法則(1)在階行列式中,把元素所在的第行和第列劃去后,留下來的階行列式叫做元素的余子式,記作nijaij1?nija.Mij??,記ij
2025-05-14 04:49
【摘要】第二章行列式§1引言在中學代數(shù)中學過,對于二元線性方程組當二級行列式時,該方程組有唯一解,即,.對于三元線性方程組有類似的結論,在這一章我們把這個結論推廣到元線性方程組,我們首先給出級行列式的定義并討論它的性質.§2排列一授課內容:§2排列二教學目的:理解掌握排列、逆序、逆序數(shù)的求法.
2025-08-05 18:39
【摘要】第一章行列式本章討論:1方程個數(shù)和未知數(shù)個數(shù)相同,且系數(shù)滿足特定條件的線性方程組的求解,從而得到行列式這個工具.1.引言2.排列3.n階行列式5.行列式的計算6.行列式按行(列)展開7.Cramer法則??行列式概念的形成行列式的性質及
2025-08-16 02:01