【摘要】本節(jié)內(nèi)容用MATLAB求極限用MATLAB求導(dǎo)數(shù)用MATLAB求積分用MATLAB求極值、最值1、用MATLAB軟件求極限2x01cosx.limx??例求特別地,當(dāng)a=0時有:解:symsx%定義變量
2024-10-16 12:42
【摘要】第五節(jié)高階導(dǎo)數(shù)思考題一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則
2025-01-08 13:41
【摘要】返回后頁前頁§4高階導(dǎo)數(shù)當(dāng)我們研究導(dǎo)函數(shù)的變化率時就產(chǎn)生了高階導(dǎo)數(shù).如物體運(yùn)動規(guī)律為,()sst?它的運(yùn)動速度是,而速度在時刻()vst??()()().atvtst?????t的變化率就是物體在時刻的加速度t返回返回
2025-08-02 10:51
【摘要】第四節(jié)高階導(dǎo)數(shù)一高階導(dǎo)數(shù)的定義二高階導(dǎo)數(shù)的求法三萊布尼茲公式四小結(jié)問題:變速直線運(yùn)動的加速度dtdststv???)()(則速度為設(shè)),(tss?.])([)()(??????tstvtava,的變化率對時間是速度加速度t?.)())(()()(lim))(()()(0
2025-05-13 02:30
【摘要】§3.53.5.1高階導(dǎo)數(shù)與高階微分的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與高階微分第3章3.5.2高階導(dǎo)數(shù)與高階微分的運(yùn)算法則高階導(dǎo)數(shù)與高階微分的概念??sst?ddsvt?vs??其瞬時為速度為:即其加
2025-05-10 12:39
【摘要】第四節(jié)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義二、高階導(dǎo)數(shù)求法舉例三、由參數(shù)方程確定的函數(shù)的二階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))
2025-01-19 13:44
【摘要】目錄上頁下頁返回結(jié)束第二節(jié)一、偏導(dǎo)數(shù)概念及其計(jì)算二、高階偏導(dǎo)數(shù)偏導(dǎo)數(shù)第九章目錄上頁下頁返回結(jié)束一、偏導(dǎo)數(shù)定義及其計(jì)算法引例:研究弦在點(diǎn)x0處的振動速度與加速度,就是),(txu0xOxu中的
2025-01-20 00:57
【摘要】§高階導(dǎo)數(shù).),()(),()(它的可導(dǎo)性點(diǎn)的函數(shù),仍可以考察內(nèi)的作為內(nèi)可導(dǎo),則它的導(dǎo)函數(shù)在設(shè)xbaxfbaxfy??,)()(,)(,)(0000點(diǎn)的二階導(dǎo)數(shù)在點(diǎn)的導(dǎo)數(shù)為在且稱點(diǎn)二階可導(dǎo)在則稱點(diǎn)可導(dǎo)在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程大學(xué)數(shù)學(xué)(三)多元微積分學(xué)第一章多元函數(shù)微分學(xué)曾金平教案編寫:劉楚中曾金平電子制作:劉楚中第一章多元函數(shù)微分學(xué)本章學(xué)習(xí)要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點(diǎn)函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。
2025-05-07 12:10
【摘要】第8節(jié)高階導(dǎo)數(shù)與高階微分高階導(dǎo)數(shù)的運(yùn)算法則).()())()(()()()(xvxuxvxunnn??????????????)()()1(1)()0()())()((knkknnnnnvuCvuCvuxvxu.)!(!!!)1()1()0()0(knknkknnnCvvuukn?????????,,1.2.
2025-07-20 05:25
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第十三講求導(dǎo)法則一.基本初等函數(shù)的導(dǎo)數(shù)推導(dǎo)一些基本公式??!1.y=Cx?R(C為常數(shù))Q??????xyx0lim?????xC
2025-01-19 16:29
【摘要】同步練習(xí)1.若f(x)=sinα-cosx,則f′(α)等于A.sinα B.cosαC.sinα+cosα D.2sinα2.f(x)=ax3+3x2+2,若f′(-1)=4,則a的值等于A. B.C. D.3.函數(shù)y=sinx的導(dǎo)數(shù)為A.y′=2sinx+cosx B.y′=+cosxC
2025-03-25 00:40
【摘要】一、和、差、積、商的求導(dǎo)法則二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)的求導(dǎo)法則第二節(jié)求導(dǎo)法則與基本初等函數(shù)求導(dǎo)公式四、基本求導(dǎo)法則與求導(dǎo)公式五、小結(jié)思考題一、函數(shù)的和、差、積、商的求導(dǎo)法則定理1并且處也可導(dǎo)在點(diǎn)除分母不為零外們的和、差、積、商則它處可導(dǎo)在點(diǎn)如
2025-08-21 12:38
【摘要】§解析函數(shù)的高階導(dǎo)數(shù)一個解析函數(shù)不僅有一階導(dǎo)數(shù),而且有各高階導(dǎo)數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示.這一點(diǎn)和實(shí)變函數(shù)完全不同.一個實(shí)變函數(shù)在某一區(qū)間上可導(dǎo),它的導(dǎo)數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說它有高階導(dǎo)數(shù)存在了.定理解析函數(shù)f(z)的導(dǎo)數(shù)仍為解析函數(shù),它的n階導(dǎo)數(shù)為
2025-05-10 14:16
【摘要】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標(biāo)面的投影§空間曲線及其方程山東農(nóng)業(yè)大學(xué)高等數(shù)
2025-07-25 04:16