freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學專題復習分類練習-平行四邊形綜合解答題(文件)

2025-03-31 07:30 上一頁面

下一頁面
 

【正文】 B=15176。=.考點:正方形的性質(zhì),矩形的判定和性質(zhì),勾股定理,直角三角形30度的性質(zhì)13.小明在矩形紙片上畫正三角形,他的做法是:①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點C落在EF上的點P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的 PBC是正三角形: (2)如圖2,小明在矩形紙片HIJK上又畫了一個正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請求出NJ的長; (3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長為6cm,當另一邊的長度a變化時,在矩形紙片上總能畫出最大的正三角形,但位置會有所不同.請根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說明問題即可),并直接寫出對應的a的取值范圍.【答案】(1)證明見解析;(2)①證明見解析;②126(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。、∠MIN=60176。設NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設等邊三角形的邊長為b,則0<b≤6,則tan60176。EH=EF,∴∠AEH+∠BEF=90176。EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面積不能等于2.說明一:∵若S△GFC=2,則12-a=2,∴a=10.此時,在△BEF中,.在△AHE中,∴AH>AD,即點H已經(jīng)不在邊AD上,故不可能有S△GFC=2.說明二:△GFC的面積不能等于2.∵點H在AD上,∴菱形邊EH的最大值為,∴BF的最大值為.又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,∴S△GFC的最小值為.又∵,∴△GFC的面積不能等于2.15.如圖,在菱形ABCD中,AB=6,∠ABC=60176。=t,證出∠GEC=90176。GE=EF=BE?sin60176?!唷螱EB=90176。2=,3247?!郈E==t,∵BE+CE=BC,∴2t+t=6,解得:t=2;(3)分兩種情況:①當<t≤2時,如圖2所示:S=△EFG的面積△NFN的面積=(t)2(+2)2=t2+t3,即S=t2+t3;當2<t≤3時,如圖3所示:S=t2+t3(3t6)2,即S=t2+t;(4)∵AH=AB?sin60176。60176?!唷鰽BC是等邊三角形,∴∠ACB=60176。由等邊三角形的性質(zhì)和三角函數(shù)得出∠GEF=60176?!唷螦HE=∠BEF.又∵∠A=∠B=90176。DE==,當DE與DA重合時,a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176。由QI=QN知∠JIN=∠QNI=15176。設NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進行計算,畫出圖形即可.(1)證明:∵①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點C落在EF上的點P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176?!郃M=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN247?!唷螦GB=60176。cos30176。=2,在Rt△ABP和Rt△A39。Q=AQ=10,在Rt△DQA39。P=10,在Rt△ABP中,由勾股定理得:BP==6, 又∵BP=2t4,∴2t4=6,解得:t=5;③當點P在BC邊上,A39。P=AP,∴∠APQ39。BP中,BP=42t,PA39。∴A39。CD=AB=8,AD=BC=18,由折疊的性質(zhì)得:PA39。M=AP=3,∴O39。M∥AB,MN=AB=8,∵O39。∴PQ=,設以PQ為直徑的圓的圓心為O39。=6,得出A39。落在CD邊上時,由折疊的性質(zhì)得:A39。=AP=8(42t)=4+2t,由勾股定理得出方程,解方程即可;②當點P在BC邊上,A39。F==6,得出A39。=PA,A39。N=MNO39。N⊥BC于N,延長NO39。,∴∠3=∠4,易證△PEM≌△PQM, △PNQ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴∠6+∠7=90176?!螧PC,∴∠PEA=∠PAE,∴PC=PE?!螪CP,∠DCP=∠BPC∠PDC=∠BPC45176。+90176。對角線平分對角的性質(zhì),三角形外角等于和它不相鄰的兩個內(nèi)角的和,等角對等邊等性質(zhì)容易得證。或135176。=+90=176?!唳?90176?!唳?∠ANO+90176。=45176。;Ⅱ、當AN=ON時,∴∠NAO=∠AON=45176?!郃G′⊥DE′;(3)①正方形OE′F′G′的邊OG′與正方形ABCD的邊AD相交于點N,如圖3,Ⅰ、當AN=AO時,∵∠OAN=45176。由四邊形OEFG是正方形,得到OG′=OE′,∠E′OG′=90176。176。C中,B′C==cm,由題意可知四邊形OEFB′是矩形,∴EF=OB′=,∴S△B′EC=.【點睛】考查圖形的折疊變化及三角形的內(nèi)角和定理勾股定理的和矩形的性質(zhì)綜合運用.關(guān)鍵是要理解折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.9.如圖,點O是正方形ABCD兩條對角線的交點,分別延長CO到點G,OC到點E,使OG=2OD、OE=2OC,然后以OG、OE為鄰邊作正方形OEFG.(1)如圖1,若正方形OEFG的對角線交點為M,求證:四邊形CDME是平行四邊形.(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點N,如圖3,設旋轉(zhuǎn)角為α(0176。C三內(nèi)角之和為180176。﹣(∠AEB+∠CEF)=90176。EC是等腰三角形,再有條件證明∠AEF=90176?!嗨倪呅蜝CGD是矩形;(2)由折疊可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴∴AE=BE,∴DE是Rt△ADB斜邊上的中線,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等邊三角形,∴∠EDB=∠DBE=60176?!郋G2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如圖所示,延長EF交AB延長線于M點,交AD延長線于N點,將△ADF繞著點A順時針旋轉(zhuǎn)90176?!唷鰾ME、△DNF、△CEF均為等腰直角三角形,∴CE=CF,BE=BM,NF=D
點擊復制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1