【摘要】第4講定積分的概念與微積分基本定理A級基礎(chǔ)演練(時間:30分鐘滿分:55分)1.(2021·大連模擬)已知f(x)為偶函數(shù)且??06f(x)dx=8,則??6-6f(x)dx等于().A.0B.4C.8D.16解析因為f(x)為偶函數(shù),圖象關(guān)
2024-12-08 14:27
【摘要】定積分與微積分基本定理 1.已知f(x)為偶函數(shù),且f(x)dx=8,則-6f(x)dx=( )A.0B.4C.8D.162.設(shè)f(x)=(其中e為自然對數(shù)的底數(shù)),則f(x)dx的值為( )A.B.2C.1D.3.若a=x2dx,b=x3dx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)
2025-08-05 05:47
【摘要】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2025-08-21 12:42
【摘要】如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),證Mdxxfabmba?????)(1)()()(abMdxxfabmba??????由閉區(qū)間上連續(xù)函數(shù)的介值定理知則在積分區(qū)間],[ba上至少存在一個點?,使dxxfba?)())((abf???.)(ba???定理1(定積分中值定理)積分
2025-05-12 23:44
【摘要】第一篇:2018考研數(shù)學(xué):微積分如何復(fù)習(xí)? 凱程考研輔導(dǎo)班,中國最權(quán)威的考研輔導(dǎo)機構(gòu) 2018考研數(shù)學(xué):微積分如何復(fù)習(xí)? 微積分的基本內(nèi)容可以分為三大塊:一元函數(shù)微積分,多元函數(shù)微積分(主要是二...
2025-10-16 04:44
【摘要】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
2025-08-11 16:42
【摘要】微積分基本定理變速直線運動中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運動中位移為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),求物體在這段時間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-07-25 15:39
【摘要】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【摘要】微積分基本定理(1)2020年12月24日星期四定積分的定義:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有定義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)的長度為,在每個小區(qū)間上取一點,依次為x1,x2,…….xi,….xn,作和如果無限趨近于
2024-11-17 15:36
【摘要】《微積分基本定理》教案[來源:中國%@^教*育~出版網(wǎng)]一、教學(xué)目標(biāo)[中@*國&教^育出版#網(wǎng)]通過實例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分二、教學(xué)重難點重點通過探究變速直線運動物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,并能正確運用基本定理計算簡單的
2024-12-07 21:43
【摘要】微積分基本定理bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插
2025-04-29 01:42
【摘要】微積分基本定理微積分是研究各種科學(xué)的工具,在中學(xué)數(shù)學(xué)中是研究初等函數(shù)最有效的工具.恩格斯稱之為“17世紀(jì)自然科學(xué)的三大發(fā)明之一”.學(xué)習(xí)微積分的意義微積分的產(chǎn)生和發(fā)展被譽為“近代技術(shù)文明產(chǎn)生的關(guān)鍵事件之一,它引入了若干極其成功的、對以后許多數(shù)學(xué)的發(fā)展起決定性作用的思想.”微積分的建立,無
【摘要】bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習(xí):1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插入n-1個分點:
2025-05-04 22:34
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固