【正文】
和咬入事故,提高了成材率和金屬收得率,提升軋機(jī)生產(chǎn)效率。、中軋機(jī)組的平/立布置粗軋軋件短,全連軋時(shí)速度慢。采用單線布置,軋機(jī)就容易平/立交替安裝,使軋件無扭行進(jìn),減少了因軋件扭轉(zhuǎn)造成的表面和內(nèi)部缺陷及廢品,而且可以選用高剛度軋機(jī),適合高檔次產(chǎn)品的生產(chǎn)。為此新建高線將精軋機(jī)組的成組傳動(dòng)概念擴(kuò)展到預(yù)精軋機(jī)組。軋機(jī)兩架一組集體傳動(dòng),故叫“微型無扭軋機(jī)”。為此,通過對(duì)油膜軸承的改進(jìn),相繼研制開發(fā)了重負(fù)荷及超重負(fù)荷V型結(jié)構(gòu)的無扭精軋機(jī)組,V型是指軋輥箱嵌入V型底座,安裝更簡(jiǎn)捷,穩(wěn)定性更好。低溫軋制可降低燃料消耗,減少脫碳、燒損,改善軋件表面質(zhì)量。主要是用來提高線材的軋制精度,以滿足用戶對(duì)產(chǎn)品質(zhì)量包括尺寸精度、表面質(zhì)量和機(jī)械性能等進(jìn)一步提高的要求。由一臺(tái)3200KW左右的調(diào)速電機(jī)經(jīng)兩級(jí)減速箱驅(qū)動(dòng)。為減少投資,摩根公司還推出了只有兩機(jī)架的減徑機(jī)組方案,有的資料把它稱為雙機(jī)架泰克森(Tekisun)高精度軋機(jī),安裝在無扭精軋機(jī)和夾送輥之間,與現(xiàn)有無扭精軋機(jī)配合使用。我們采用改變吐絲機(jī)運(yùn)行速度實(shí)現(xiàn)吐絲機(jī)頭部定位控制。但各個(gè)企業(yè)還要根據(jù)市場(chǎng)需求和本企業(yè)能力確定自己的發(fā)展方向;追求高附加值產(chǎn)品要量力而行,根據(jù)本企業(yè)技術(shù)水平、資金能力、市場(chǎng)需求、競(jìng)爭(zhēng)中所處地位選擇項(xiàng)目和確定產(chǎn)品,發(fā)揮本企業(yè)的用戶群優(yōu)勢(shì)、地域優(yōu)勢(shì)、技術(shù)優(yōu)勢(shì)等。s highspeed wire rod : highspeed wire rod mill。after hot forging or cold forging into the rivet。s highspeed wire rod production achieved good results, but there are still some problems, mainly as。 arrangement, the oil film bearings [13].The mill two groups of collective drive, so called “minino twist advantage is tungsten carbide roll rings installed to extend the pass life, the main motor and gear reduction from four sets of two sets, 22% less cost than conventional independent prefinishing mill, and rolling section, rolling force, cantilever shorting mill stiffness without 39。change the speed of the spinning change the speed of the spinning machine spinning machine head positioning the speed of the spinning machine principle: The system according to the deviation between the actual angle and setting angle of deviation of the location of the spinning machine(spinning machine)to adjust the speed of the spinning machine, spinning when the wire to the predetermined requires that the speed of the spinning machine adjustment and recovery speed of the process must be pleted before the wire head into the spinning remarksDevelopment of highspeed wire rod production to today39?!靶∪宋铩痹谏鐣?huì)中官階、地位極其低下,生活困苦,但又逆來順受、安分守己、性格懦弱、膽小怕事,因此成為“大人物”統(tǒng)治下被侮辱的犧牲者。揭示現(xiàn)實(shí)中小人物存在的具體現(xiàn)象,生活在現(xiàn)代社會(huì)的人們,應(yīng)該靜下心來反思一下,是不是自己身上也能找到小人物的影子,指出文章對(duì)現(xiàn)實(shí)的警示意義。主要成果包括:;通過對(duì)操縱過程中針尖運(yùn)動(dòng)路徑的合理設(shè)置、SWNT上操縱位置和針尖下壓距離的選擇,可以向SWNT中引入各種類型的應(yīng)力。而且SWNT的存在會(huì)對(duì)Si基底的AFM氧化有明顯的增強(qiáng)作用,相同條件下,表面有SWNT的Si氧化后產(chǎn)生的SiOx,比沒有SWNT時(shí)更多,這種增強(qiáng)作用有利于對(duì)SWNT的焊接固定。采用更強(qiáng)的AFM氧化條件,可以實(shí)現(xiàn)SWNT和Si的同時(shí)氧化,從而可以在任意位點(diǎn)對(duì)SWNT進(jìn)行切割。有效彎曲部分與基底間僅有vdW相互作用,其長(zhǎng)度在整個(gè)彎曲過程中幾乎保持不變?!巴蛔儭倍喟l(fā)生于小直徑管,而“漸變”更常見于大直徑管。從導(dǎo)致兩種屈曲模式的機(jī)理考慮,除直徑外,CNTs的層數(shù)對(duì)其屈曲行為也有重要影響,這預(yù)示了在CNTs的力學(xué)性質(zhì)中,存在不同于傳統(tǒng)尺寸效應(yīng)的雙尺寸效應(yīng),即直徑和層數(shù)共同決定CNTs力學(xué)行為。研究發(fā)現(xiàn):(1)扭轉(zhuǎn)形變下,wRBM變大,位于~1600 cm1的G+(E2(g))模振動(dòng)頻率發(fā)生較大的紅移,而其他在1590 cm1~1560cm1范圍內(nèi)的大部分G模會(huì)發(fā)生輕微的藍(lán)移,振動(dòng)頻率發(fā)生紅移的G模的位移量,一般遠(yuǎn)遠(yuǎn)大于發(fā)生藍(lán)移的G模的位移量;(2)拉伸形變下,RBM和G+(E2(g))模振動(dòng)頻率不變,而在1590 cm1~1560 cm1范圍內(nèi)的大部分G模會(huì)發(fā)生明顯的紅移。按照預(yù)測(cè),這種分裂或新模的出現(xiàn)最可能發(fā)生在鋸齒形和椅形SWNTs中。利用AFM操縱在單根SWNTs水平上的研究,可以排除不同直徑和手性帶來的平均效應(yīng),從而有利于揭示SWNTs的本征性質(zhì)。關(guān)鍵詞:?jiǎn)伪谔技{米管,AFM操縱與加工,形變,屈曲,共振拉曼光譜AFM Manipulation, Deformation and Related Raman Spectroscopy ofSingleWall Carbon NanotubesDuan XiaojieABSTRACTThe study on deformed carbon nanotubes(CNTs), including the study of their structure evolution and properties change under strain, is important not only for the application of CNTs in posite materials, strain sensors, nanoelectronic and nanoelectromechanical devices, but also for the development of related this thesis, we have developed controlled atomic force microscopy(AFM)manipulation techniques for singlewall carbon nanotubes(SWNTs)on this controlled AFM manipulation, the buckling behavior of CNTs under bending, and resonance Raman spectroscopy of SWNTs under torsional and uniaxial strains, have been main results are listed as followings: AFM manipulation techniques for SWNTs on surfaces have been developed By defining proper tip path, manipulation position on SWNT, and choosing optimal tip pressing distance, different kinds of deformation can be induced into deformation is stabilized by the interaction between SWNTs and get controlled AFM manipulation, a new kind of nanofabricationnanowelding has been invented based on the AFM oxidation of Si the Si substrate with SWNT on top of it is oxidized by the AFM tip, the newly formed SiOx will grow around the tube, effectively fixing that site of SWNT onto the Si existence of SWNT can enhance the oxidation of same oxidation condition, more SiOx can be produced with the presence of SWNT than the case where there is no is helpful for the intensity of the welding can be modulated by changing the oxidation voltage and the tip moving higher voltage and slower tip moving, stronger welding can be the thermal oxidation of SWNTs in air and the Raman characterization, it was found that this nanowelding has no obvious influence on the chemical structure of with this nanowelding, the magnitude and distribution of strain induced into SWNT by AFM manipulation can be well SWNT and Si can be oxidized when using stronger oxidation condition(much higher voltage and lower tip moving speed), thus the SWNT can be cut at well defined this AFM cutting, nanowelding and manipulation, plex SWNTbased structures can be constructed, proved the function of AFM as a buckling behavior of CNTs under bending has been studiedBy choosing proper manipulation site on SWNT, the length of the fragment which is being manipulated, manipulation path, and optimal tip pressing distance, the angle can be well controlled when SWNT is bent by AFM on this controlled bent of CNT by AFM manipulation, A CNT with a series of different bending angles has been interaction between manipulated SWNT fragment and substrate is largely decreased after the the effective bending region is located at the fragment where Only vdW interaction exists between it and the appears as the cross point between the fixed SWNT part andmanipulated SWNT part in the AFM vdW force exists between the effective bending region and substrate, and its length keeps constant when changing the bending recording the height change at the effective bending region when changing the bending angle gradually, The structural evolution and buckling behavior has been investigated under the distinct ?abrupt? and ?gradual? buckling modes have been revealed in different the ?abrupt? buckling mode, the height of the bending ?point? has a su