【總結】DCBAO圓周角和圓心角的關系同步練習一、填空題:1,等邊三角形ABC的三個頂點都在⊙O上,D是AC上任一點(不與A、C重合),則∠ADC的度數(shù)是________.DCBAOEDCBAODCBAO(1)
2024-11-28 16:56
【總結】弧、弦、圓心角、圓周角—鞏固練習(基礎)【鞏固練習】一、選擇題1.如圖,AC是⊙O的直徑,弦AB∥CD,若∠BAC=32°,則∠AOD等于().A.64° B.48° C.32° D.76°2.如圖,弦AB,CD相交于E點,若∠BAC=27°,∠BEC=64°,則∠AOD等于().A
2025-07-18 17:44
【總結】1.在同圓或等圓中,如果兩個圓心角、兩條弧、或中有一組是相等的,那么,所對應的其余各組量都分別相等。2.在⊙O中的兩條弦AB和CD,ABCD,AB和CD的弦心距分別為OM和ON,則OM__________ON。3.已知:如圖,AB=AC,D為弧AB的中點,G為弧AC中點,求證:DE=FG。4.AB、CD是⊙O內兩條弦,且
2025-03-25 00:01
【總結】圓周角和圓心角的關系練習一、填空題:,等邊三角形ABC的三個頂點都在⊙O上,D是上任一點(不與A、C重合),則∠(1)(2)(3),四邊形ABCD的四個頂點都在⊙O上,且AD∥BC,對角線AC與BC相交于點E,那么圖中有_________對全等三角形;________對相似比不等于1的相似三角
2025-03-24 04:37
【總結】北師大版九年級下冊數(shù)學()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導入本節(jié)目標..
2025-06-20 17:31
【總結】北師大版九年級下冊數(shù)學圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導入本節(jié)目標,會熟練運用推論解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力
【總結】圓周角與圓心角(2)7一、計算題:1、直角三角形的斜邊長是17,斜邊上的高為,①求三角形外接圓的半徑;②求各銳角的正切值.2、如圖,在⊙O中,F(xiàn)、G是直徑AB上的兩點,C、D、E是半圓上的點,如果弧AC的度數(shù)為60°,弧BE的度數(shù)為20°,且∠CFA=∠DFB,∠DGA=∠EGB.求:∠FDG的大小
2025-03-25 00:00
【總結】初中數(shù)學資源網(wǎng)華師大九年級數(shù)學(下)第23章圓.圓周角和圓心角的關系-圓周角定理初中數(shù)學資源網(wǎng)探究活動:有關圓周角的度數(shù)1.探究半圓或直徑所對的圓周角等于多少度?2.90°的圓周角所對的弦是否是直徑?線段AB是⊙O的直徑,點C是⊙O上任
2024-11-06 19:12
【總結】OABC圓周角和圓心角的關系頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游
2025-08-01 17:24
【總結】2.2圓心角、圓周角2.圓心角1.在實際操作中發(fā)現(xiàn)圓的旋轉不變性;2.結合圖形了解圓心角的概念,學會辨別圓心角;3.能發(fā)現(xiàn)圓心角、弦、弧之間的關系,并會初步運用這些關系解決有關的問題.(重點)一、情境導入人類為了獲得健康和長壽,經(jīng)過不斷的實踐探索
2024-12-09 11:58
【總結】第2課時圓周角定理的推論2與圓內接四邊形1.在實際操作中探索圓的性質,進一步探索直徑所對的圓周角的特征,并能應用其進行簡單的計算與證明;(重點)2.掌握圓內接四邊形的有關概念及性質;(重點)3.在探索過程中,體會觀察、猜想的思維方法,在定理的證明過程中,體會化歸和分類討論的數(shù)學思想和完全歸納的方法.
【總結】圓周角和圓心角的關系(1);;、歸納等數(shù)學思想方法.在射門游戲中(如圖),球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠ABC)有關.如圖所示,當球員在B,D,E處射門時,他所處的位置對球門AC分別成三個張角∠ABC,∠ADC,∠AEC這三個角的大小,有什么關系?
2025-01-18 17:37
【總結】課題:圓周角與圓心角的關系課型:新授課年級:九年級教學目標:1.掌握圓周角的概念和圓周角定理的證明.2.經(jīng)歷探索圓周角和圓心角的關系的過程,學會以特殊情況為基礎,通過轉化來解決一般性問題的方法,滲透分類的數(shù)學思想3.學生自主探索定理的過程中,經(jīng)歷猜想、推理、驗證等環(huán)節(jié),獲得正確學習方式.培養(yǎng)學生的探索精神和解決問題的能
2024-12-08 05:04
【總結】圓心角、圓周角第2章圓圓心角知識目標目標突破第2章圓總結反思知識目標1.通過觀察車輪、鐘表等圖案,理解圓心角的概念.2.通過回顧圓的旋轉不變性,理解圓心角、弧、弦之間的關系.圓心角目標突破目標一
2025-06-15 12:12
【總結】圓周角和圓心角的關系(1)圓心角、弧、弦、弦心距之間的關系ABCDOABOA'B'O'在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等圓心角、弧、弦、弦心距之間的關系ABCDOABOA'B'O'在同圓或等圓中,
2024-11-30 02:41