【正文】
.................. 1 研究背景與意義 ...................................................................................................... 1 研究發(fā)展與現(xiàn)狀 ...................................................................................................... 2 論文內(nèi)容和結(jié)構(gòu)安排 .............................................................................................. 3 第二章 OFDM 原理 ............................................................................... 4 OFDM 概述 .............................................................................................................. 4 單載波與多載波 ...................................................................................................... 6 OFDM 基本原理 ...................................................................................................... 9 OFDM 系統(tǒng)模型 ...................................................................................................... 9 OFDM 優(yōu)勢(shì) ............................................................................................................ 10 OFDM 的關(guān)鍵問(wèn)題 ................................................................................................ 12 本章小結(jié) ................................................................................................................ 13 第三章 OFDM 系統(tǒng)的峰均比研究 ..................................................... 15 OFDM 系統(tǒng)中的峰值平均功率比 ........................................................................ 15 峰均比的定義 .............................................................................................. 15 高峰均比對(duì) OFDM 系統(tǒng)的影響 ................................................................ 15 OFDM 系統(tǒng)中峰均比的分布 ...................................................................... 16 峰均比的抑制 方法 ................................................................................................ 17 選擇映射( SLM)算法減小系統(tǒng)峰均比 ........................................................... 18 本章小結(jié) ................................................................................................................ 22 第四章 改進(jìn)的 SLM 算法研究 ........................................................... 23 多信號(hào)表示( MSR)算法 ................................................................................... 23 MSR1 算法 ............................................................................................................. 24 MSR2 算法 ............................................................................................................. 28 江蘇科技大學(xué)本科畢業(yè)設(shè)計(jì)(論文) IV MSR1 算法和 MSR2 算法的比較 ......................................................................... 31 本章小結(jié) ................................................................................................................ 33 結(jié) 論 .................................................................................................. 34 致 謝 .................................................................................................. 35 參 考 文 獻(xiàn) .......................................................................................... 36 江蘇科技大學(xué)本科畢業(yè)設(shè)計(jì)(論文) 1 第一章 緒論 研究背景與意義 隨著信息化的進(jìn)一步發(fā)展,未來(lái)移動(dòng)通信系統(tǒng)需要能夠用有限的頻譜資源來(lái)提供更多的通信業(yè)務(wù)、更高的通信速率和更好的通信質(zhì)量。仿真結(jié)果表明, SLM 算法能夠有效地降低系統(tǒng)的 PAPR, MSR 算法能取得更好的性能。 SLM 算法的一大主要缺點(diǎn)是提高性能需要增加大量的快速傅里葉逆變換 (Inverse Fast Fourier Transform, IFFT) 次數(shù),計(jì)算復(fù)雜度高。 三、 完成日期及進(jìn)度 20xx 年 3月 19 日至 20xx 年 6月 15 日,共 13 周。本課題要求學(xué)生對(duì) OFDM系統(tǒng)中的峰值平均功率比原理進(jìn)行研究,學(xué)習(xí) OFDM系統(tǒng),研究如何減小大峰值功率信號(hào)的出現(xiàn)技術(shù),利用計(jì)算機(jī)技術(shù)進(jìn)行計(jì)算仿真。本人授權(quán) 大學(xué)可以將本學(xué)位論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫(kù)進(jìn)行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存和匯編本學(xué)位論文。除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含任何其他個(gè)人或集體已經(jīng)發(fā)表或撰寫的成果作品。盡我所知,除文中特別加以標(biāo)注和致謝的地方外,不包含其他人或組織已經(jīng)發(fā)表或公布過(guò)的研究成果,也不包含我為獲得 及其它教育機(jī)構(gòu)的學(xué)位或?qū)W歷而使用過(guò)的材料。對(duì)本研究提供過(guò)幫助和做出過(guò)貢獻(xiàn)的個(gè)人或集體,均已在文中作了明確的說(shuō)明并表示了謝意。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體,均已在文中以明確方式標(biāo)明。 涉密論文按學(xué)校規(guī)定處理。 設(shè)計(jì)內(nèi)容與要求 : (1) 調(diào)研收集分析有關(guān)資料,研究 OFDM系統(tǒng)產(chǎn)生高峰均比的原因; (2) 選擇合適的實(shí)現(xiàn)方案抑 制高峰均比 。 進(jìn)度安排: 1. (兩周)資料查找、方案論證、開(kāi)題報(bào)告撰寫; 2. (兩周) MATLAB開(kāi)發(fā)環(huán)境的掌握; 3. (三周)進(jìn)行算法的研究、系統(tǒng)的仿真、綜合工作; 4. . 20(兩周)系統(tǒng)調(diào)試及動(dòng)態(tài)仿真結(jié)果的分析; 5. . 3(兩周)撰寫畢業(yè)設(shè)計(jì)論文,整理文檔; 6. (兩周)準(zhǔn)備答辯;畢業(yè)設(shè)計(jì)答辯。 多信號(hào)表示 (Multiple Signal Representation, MSR) 算法是 SLM 的改進(jìn)算法,它不需要增加 IFFT 次數(shù),僅通過(guò)對(duì) SLM 算法產(chǎn)生的待選序列的線性組合,構(gòu)造出更多的新待選序列,以此提高 SLM 算法的性能。 關(guān)鍵詞 : 正交頻分復(fù)用 ;峰均比;選擇映射;多信號(hào)表示 江蘇科技大學(xué)本科畢業(yè)設(shè)計(jì)(論文) II Abstract Orthogonal Frequency Division Multiplexing (OFDM) is the most important transmission technique for future wireless munication system. It has the high bandwidth efficiency and resistance to frequencyselective fading. However, for OFDM technology, high PeaktoAverage Power Ratio (PAPR) has been a major obstacle to practical use. Selected Mapping (SLM) algorithm is an effective method for reducing the PAPR of OFDM signal without distortion. Firstly, the original OFDM signal is multiplied by the U groups of random phase sequences, resulting in the U groups of new OFDM signals, which contain the original information. Secondly, one group with the minimum PAPR of the OFDM signals is selected to be sent. SLM algorithm improves the PAPR performance by increasing the putational plexity. One of the major shortings of the SLM algorithm is that it requires too many Inverse Fast Fourier Transforms (IFFTs) a nd high putational plexity to improve the performance. Multiple Signal Representation (MSR) algorithm is the improved SLM algorithm. It can create new candidates via linear bination of those in SLM and improve the performance of SLM without more IFFTs. In this thesis, we discuss the principles of SLM algorithm and MSR algorithm, and use the tool of Matlab for system simulation. In this paper, 128 subcarriers and 4 IFFTs are chosen for the simulation conditions. The main simulation result is that the PAPR obtained by SLM algorithm and MSR algorithm is reduced by and than the original PAPR. The simulation results show that SLM algorithm can effectively reduce the PAPR of the system, and that MSR algorithm can achieve better performance. K