【正文】
系統(tǒng)進(jìn)行分析,建立了橋式吊車(chē)運(yùn)動(dòng)系統(tǒng)的數(shù)學(xué)模型。他們先對(duì)吊車(chē)模型進(jìn)行狀態(tài)變換,使其變?yōu)榈湫偷囊话粝到y(tǒng)模型,然后按照球棒系統(tǒng)進(jìn)行非線(xiàn)性控制的設(shè)計(jì)。 日本學(xué)者 Yamada 將模糊控制試用于吊車(chē)的防擺控制中,取得了教好的效果。 韓國(guó)學(xué)者的控制方法采用傳統(tǒng)的控制理 論與現(xiàn)代人工智能理論向結(jié)合設(shè)計(jì)吊車(chē)防擺與定位控制器。坐著提出了橋式吊車(chē)水平規(guī)律和抓斗擺動(dòng)規(guī)律,提出了一種抓斗防擺的方法。并提出了基于時(shí)間最優(yōu)的小車(chē)載荷擺動(dòng)的兩拍消擺策略。 國(guó)內(nèi)最早從事吊車(chē)防擺控制研究的學(xué)者是中國(guó)民航學(xué)院的華克強(qiáng)等人,針對(duì)橋式吊車(chē),給出了系統(tǒng)的簡(jiǎn)化模型,根據(jù)此模型,射擊流最優(yōu)控制器,自適應(yīng)控制器、模擬控制器、并對(duì)三種控制器進(jìn)行了比較分析。如此反復(fù)數(shù)次,便將吊物的搖擺能量轉(zhuǎn)化為蹺板梁的轉(zhuǎn)動(dòng)能量,并迅速吸收而使其緩沖,以達(dá)到減搖的 目的。吊物將擺向前方,從而使蹺板梁跟著傾斜,在這種情況下,蹺板梁的傾斜能量將由液力緩沖缸吸收。 翹班梁式減搖裝置。 分離小車(chē)減搖裝置。主要有以下幾種方式: 交叉鋼絲繩減搖裝置。這種方式不但耗費(fèi)的時(shí)間長(zhǎng),而且消擺效果與吊車(chē)司機(jī)的操作經(jīng)驗(yàn)有很大關(guān)系,阻礙了吊車(chē)工作效率的進(jìn)一步提高。 另外,隨著 全球合作經(jīng)濟(jì)的快速發(fā)展,吊車(chē)運(yùn)用的場(chǎng)合不斷擴(kuò)大,貨物調(diào)運(yùn)量也越來(lái)越大,單純依靠人工操作吊車(chē)來(lái)調(diào)運(yùn)貨物的工作方式越來(lái)越成為阻礙貨物快速調(diào)運(yùn)的瓶頸。 其次,在一些 特殊的工作場(chǎng)合,對(duì)吊車(chē)運(yùn)行過(guò)程中的擺動(dòng)有嚴(yán)格的生產(chǎn)要求。 吊車(chē)的體積和容量因應(yīng)用場(chǎng)合不同而異,但絕大多數(shù)場(chǎng)合都要求它們的運(yùn)輸速度應(yīng)盡可能地快,這樣會(huì)提高生產(chǎn)效率。 關(guān)鍵詞: 橋式吊車(chē);防擺;非線(xiàn)性 PID III Abstract Generally speaking, the loading efficiency of crane is mainly influenced by swing of hanging objects. As an active method for avoiding swing, electronic antiswing is not dependent on the driver’s experience and can bine swingdecreasing with movementcontrol to improve the efficiency of crane, and lighten the intensity of drivers. Therefore, it will be used widely for loading of port and factory. In this thesis, the mathematical model of the overhead crane motion system is established and the simulation model is also built . The two closedloop PID controller is designed to achieve the control of antiswing and orientation. Comparing with the controlling results of using conventional PID algorithm as a controller on different disturbance conditions, we can find that it is difficult to meet the accuracy requirements of the practical operation of crane system which has easily variable control parameters in the process of running. So we design the nonlinear PID whose variable parameters change with error. The results of simulation indicate that the steadystate error can be eliminated, and the response time of system can be shortened, in addition, the disturbance rejection ability of system can be strengthened. Then, we plish the digital realization of PID control strategy with increment PID control algorithm. This system has realized the crane hook is not swinging the purpose of arriving at our destination, make lifting heavy weights in got to the designated place, pendulum Angle is zero. Avoiding the homework, as into unnecessary accidents. Key Words: Overhead crane; Antiswing; Nonlinear PID IV 目 錄 第 1 章 緒 論 ................................................................................................................... 1 課題的背景及意義 ............................................................................................ 1 國(guó)內(nèi)外研究現(xiàn)狀 ................................................................................................ 2 本文研究主要內(nèi)容 ............................................................................................ 4 第 2 章 系統(tǒng)建模 ............................................................................................................. 5 問(wèn)題的提出 ........................................................................................................ 5 建模機(jī)理 ............................................................................................................ 5 系統(tǒng)模型的建立 ................................................................................................ 6 第 3 章 方案論證 ........................................................................................................... 10 系統(tǒng)方案的論證 .............................................................................................. 10 總體方案設(shè)計(jì) ...................................................................................................11 傳感器的選型 ...................................................................................................11 轉(zhuǎn)換器的選型 .................................................................................................. 13 單片機(jī)的選型 .................................................................................................. 15 變頻器的選型 .................................................................................................. 16 第 4 章 硬件電路設(shè)計(jì) ................................................................................................... 17 數(shù)據(jù)檢測(cè)模塊 .................................................................................................. 17 濾波電路模塊 .................................................................................................. 19 轉(zhuǎn)換電路 .......................................................................................................... 20 單片機(jī)最小系統(tǒng) .............................................................................................. 20 變頻器調(diào)速模塊 .............................................................................................. 21 鍵盤(pán)電路 .......................................................................................................... 22 電源電路 .......................................................................................................... 23 第 5 章 軟件設(shè)計(jì) ........................................................................................................... 24 系統(tǒng)流程圖 ...................................................................................................... 24 檢測(cè)控制流程圖 .............................................................................................. 25 變頻器子程序 .................................................................................................. 25 報(bào)警程序 .......................................................................................................... 26 PID 控制的設(shè)計(jì) ............................................................................................... 27 非線(xiàn)性 PID 設(shè)計(jì) .................................................................................. 28 V 仿真實(shí)驗(yàn)驗(yàn)證 ....................................................................................... 30 增量