【總結(jié)】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說明
2024-11-27 23:43
【總結(jié)】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來表示其他向量情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題難點(diǎn)同上教學(xué)設(shè)
2024-11-19 20:38
【總結(jié)】一、選擇題1.已知簡諧運(yùn)動(dòng)f(x)=2sin(π3x+φ)(|φ|π2)的圖象經(jīng)過點(diǎn)(0,1),則該簡諧運(yùn)動(dòng)的最小正周期T和初相φ分別為()A.T=6,φ=π6B.T=6,φ=π3C.T=6π,φ=π6D.T=6π,φ=π3【解析】T=2πω=2ππ3=6
2024-11-27 23:47
【總結(jié)】一、選擇題1.已知函數(shù)y=cosx(x∈R),下面結(jié)論錯(cuò)誤的個(gè)數(shù)是()①函數(shù)f(x)的最小正周期為2π;②函數(shù)f(x)在區(qū)間[0,π2]上是增函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=0對(duì)稱;④函數(shù)f(x)是奇函數(shù).A.0B.1C.2D.3【解析】余弦函數(shù)的最小正周期是
【總結(jié)】一、選擇題1.函數(shù)y=sin(-x),x∈[0,2π]的簡圖是()【解析】∵y=sin(-x)=-sinx,由五點(diǎn)法知應(yīng)選B.【答案】B2.函數(shù)y=2sinx-3的定義域是()A.[π6,5π6]B.[π6+2kπ,5π6+2kπ](k∈Z)C.[π3,2π3]
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列各組的兩個(gè)向量共線的是().A.a(chǎn)1=(-2,3),b1=(4,6)B.a(chǎn)2=(1,-2),b2=(7,14)C.a(chǎn)3=(2,3),b3=(3,2)D.a(chǎn)4=(-3,2),b4=(6,-4)解析對(duì)于A,-2
【總結(jié)】平面向量基本定理考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【總結(jié)】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個(gè)平面
2024-12-05 10:15
【總結(jié)】平面向量基本定理1.設(shè)O點(diǎn)是平行四邊形ABCD兩對(duì)角線的交點(diǎn),下列向量組中可作為這個(gè)平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個(gè)向量
【總結(jié)】關(guān)于《平面向量基本定理》的效果分析一、效果總評(píng)本節(jié)課運(yùn)用了“合作探究、分層推進(jìn)教學(xué)法”,使學(xué)生在個(gè)人自主學(xué)習(xí)、小組合作探究、全班互相交流、教師點(diǎn)評(píng)總結(jié)的交互推動(dòng)下,主動(dòng)學(xué)習(xí),積極參與,全面合作,廣泛交流。教師營造了民主、平等、互動(dòng)、開放的學(xué)習(xí)、交流氛圍,較好地發(fā)揮了促進(jìn)者、指導(dǎo)者和合作者的作用,引領(lǐng)學(xué)生通過對(duì)各類有層次的問題的思考、探究、交流、解
【總結(jié)】平面向量基本定理學(xué)習(xí)目標(biāo):1.理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義.2.在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來表示其他向量.3.會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題.學(xué)習(xí)重點(diǎn):會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題學(xué)習(xí)難點(diǎn):會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的
【總結(jié)】第二章一、選擇題1.已知點(diǎn)A(7,1)、B(1,4),直線y=12ax與線段AB交于點(diǎn)C,且AC→=2CB→,則a等于()A.2B.1C.45D.53[答案]A[解析]設(shè)C(x,y),則(x-7,y-1)=(2-2x,8-2y),∴????
2024-11-27 23:40
【總結(jié)】2.1.1向量的概念一.學(xué)習(xí)要點(diǎn):向量的有關(guān)概念二.學(xué)習(xí)過程:一、復(fù)習(xí):在現(xiàn)實(shí)生活中,我們會(huì)遇到很多量,其中一些量在取定單位后用一個(gè)實(shí)數(shù)就可以表示出來,如長度、質(zhì)量等.還有一些量,如我們在物理中所學(xué)習(xí)的位移,是一個(gè)既有大小又有方向的量,這種量就是我們本章所要研究的向量.二、新課學(xué)習(xí)::
【總結(jié)】2.1.3向量的減法一.學(xué)習(xí)要點(diǎn):向量的減法二.學(xué)習(xí)過程:一、復(fù)習(xí):向量加法的法則:二、新課學(xué)習(xí):1.用“相反向量”定義向量的減法(1)“相反向量”的定義:(2)規(guī)定:零向量的相反向量仍是零向量.?(?a)
2024-11-27 23:46
【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點(diǎn),那么這些向量的終點(diǎn)構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個(gè)孤立的點(diǎn)D.一個(gè)圓[答案]D[解析]圖形是一個(gè)以始點(diǎn)為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點(diǎn)后,這些向量的終點(diǎn)將落在(