【總結(jié)】“方程的根與函數(shù)的零點”【教學(xué)目標】一、知識與技能1、通過探索一元二次方程的實根與二次函數(shù)圖象之間的關(guān)系,讓學(xué)生領(lǐng)會方程的根與函數(shù)零點之間的聯(lián)系,了解零點的概念.2、以具體函數(shù)在某區(qū)間上存在零點的特點,探索在某區(qū)間上圖象連續(xù)的函數(shù)存在零點條件以及個數(shù),理解并掌握在某個區(qū)間上圖象連續(xù)的函數(shù)零點存在的判定方法.二、過程與方法
2024-12-08 01:53
【總結(jié)】高三數(shù)學(xué)函數(shù)的圖像、零點一:選擇題f(x)=x2﹣2x+b在區(qū)間(2,4)內(nèi)有唯一零點,則b的取值范圍是( D?。〢、RB、(﹣∞,0)C、(﹣8,+∞)D、(﹣8,0),用二分法求方程在(1,3)內(nèi)近似解的過程中,f(1)>0,f()<0,f(2)<0,f(3)<0,則方程的根落在區(qū)間( A?。〢、(1,)B、(,2)C、
2025-03-24 12:17
【總結(jié)】函數(shù)零點問題【教學(xué)目標】知識與技能:1.理解函數(shù)零點的定義以及函數(shù)的零點與方程的根之間的聯(lián)系,掌握用連續(xù)函數(shù)零點定理及函數(shù)圖像判斷函數(shù)零點所在的區(qū)間與方程的根所在的區(qū)間.2.結(jié)合幾類基本初
2025-03-24 12:18
【總結(jié)】方程的根與函數(shù)的零點課標分析【課標分析】必修一第三章“函數(shù)與方程”是高中數(shù)學(xué)的新增內(nèi)容,是近年來高考關(guān)注的熱點.本章函數(shù)與方程是中學(xué)數(shù)學(xué)的核心概念,并且與其他知識具有廣泛的聯(lián)系性,地位重要。本節(jié)課方程的根與函數(shù)的零點是整章內(nèi)容的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。本節(jié)內(nèi)容,學(xué)生將學(xué)習(xí)利用函數(shù)的
2024-11-28 21:40
【總結(jié)】方程的根與函數(shù)的零點班級:__________姓名:__________設(shè)計人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語】高尚的理想是人生的指路明燈。有了它,生活就有了方向;有了它,內(nèi)心就感到充實。邁開堅定的步伐,走向既定的目標吧!【學(xué)習(xí)目標】1.能利用函數(shù)圖象和性質(zhì)判斷某些函數(shù)的零點
2024-12-08 22:40
【總結(jié)】真題感悟·考點整合熱點聚焦·題型突破歸納總結(jié)·思維升華第4講函數(shù)圖象的切線及交點個數(shù)問題真題感悟·考點整合熱點聚焦·題型突破歸納總結(jié)·思維升華高考定位在高考試題的導(dǎo)數(shù)壓軸題中,把求切線和研究函數(shù)的性質(zhì)交匯起來是一個命題熱點;兩個函數(shù)圖象的交點問題可以轉(zhuǎn)化為一個
2025-08-05 05:46
【總結(jié)】1.教材P86-P87引入“函數(shù)的零點”的概念經(jīng)歷了幾個過程?自我感悟2.從知識點及思想方法角度分析,你有哪些收獲?3.教材研究了二次函數(shù)y=f(x)零點情況,那么對于一般的函數(shù)y=f(x)零點情況又怎樣研究呢?(1)求y=x3-x的零點個數(shù);(
2025-03-12 14:54
【總結(jié)】函數(shù)的零點沈陽二中數(shù)學(xué)組思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程ax2+bx+c=0(a≠0)的根函數(shù)y=ax2+bx+c(a≠0)的圖象判別式△=b2-4ac△>0△=0△<0
2025-08-16 01:48
【總結(jié)】廣東省深圳市第三高級中學(xué)數(shù)學(xué)必修一《函數(shù)的零點》課件自學(xué)反饋?)0()(22的圖象有何關(guān)系的根與二次函數(shù)二次方程???????acbxaxxfcbxaxxy31?xy21?xy21?4?1322???xxy442???xxy542???xxy重點評析(以a&
2024-11-11 06:00
【總結(jié)】第三章函數(shù)的應(yīng)用數(shù)學(xué)·必修1(人教A版)函數(shù)與方程(習(xí)題課)?基礎(chǔ)達標1.下列函數(shù)中有兩個零點的是()A.y=lgxB.y=2xC.y=x2D.y=|x|-1答案:D2.函數(shù)f(x)=x2-3x+2的零點是()
2024-11-22 01:27
2024-11-19 04:55
【總結(jié)】方程的根與函數(shù)的零點(2)一、選擇題:1.借助計算器利用二分法確定函數(shù)f(x)=x3-3x+1的零點近似值為()(精確到)A.B.C.D.x3-4x-5=0在區(qū)間[2,3]內(nèi)的實根時,取區(qū)間中點x0=,則下一個有根區(qū)間為()A.[2,3]B.[2,2,5]C.[2
2024-11-28 00:18
【總結(jié)】10函數(shù)零點的個數(shù)問題一、知識點講解與分析:1、零點的定義:一般地,對于函數(shù),我們把方程的實數(shù)根稱為函數(shù)的零點2、函數(shù)零點存在性定理:設(shè)函數(shù)在閉區(qū)間上連續(xù),且,那么在開區(qū)間內(nèi)至少有函數(shù)的一個零點,即至少有一點,使得。(1)在上連續(xù)是使用零點存在性定理判定零點的前提(2)零點存在性定理中的幾個“不一定”(假設(shè)連續(xù))①若,則的零點不一定只有一個,可以有多個②若,
2025-03-24 04:05
【總結(jié)】函數(shù)零點的定義理解 函數(shù)的零點是函數(shù)圖象的一個重要的特征,同時也溝通了函數(shù)、方程、不等式以及算法等內(nèi)容,在分析解題思路、探求解題方法中起著重要的作用,因此要重視對函數(shù)零點的學(xué)習(xí).下面就函數(shù)的零點判定中的幾個誤區(qū)進行剖析,希望對大家有所幫助.1.因"望文生義"而致誤 例1.函數(shù)的零點是 ( ?。。粒 。拢 。茫 。模保插e解:C錯解剖析:錯誤的原
2025-06-18 23:35
【總結(jié)】第三章函數(shù)的應(yīng)用§函數(shù)與方程3.方程的根與函數(shù)的零點課時目標元二次方程根的存在性及根的個數(shù),理解二次函數(shù)的圖象與x軸的交點和相應(yīng)的一元二次方程根的關(guān)系.念以及函數(shù)零點與方程根的聯(lián)系..1.函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點和相應(yīng)的ax2+bx+c=0(a≠0)
2024-12-07 21:18