【總結(jié)】多項(xiàng)式乘多項(xiàng)式試題精選(二) 一.填空題(共13小題)1.如圖,正方形卡片A類、B類和長方形卡片C類各若干張,如果要拼一個(gè)長為(2a+b),寬為(a+b)的長方形,則需要C類卡片 _________ 張. 2.(x+3)與(2x﹣m)的積中不含x的一次項(xiàng),則m= _________?。?.若(x+p)(x+q)=x2+mx+24,p,q為整數(shù),則m的值等于
2025-06-24 02:37
【總結(jié)】有理數(shù)的乘法單項(xiàng)式的乘法法則包括以下三部分:(1)積的系數(shù)等于各因式系數(shù)的積;(2)相同字母相乘;(3)只在一個(gè)單項(xiàng)式里含有的字母,要連同它的指數(shù)寫在積里.(注意不要把這個(gè)因式丟掉)(同底數(shù)冪的乘法)單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個(gè)單
2024-11-28 22:45
【總結(jié)】多項(xiàng)式乘以多項(xiàng)式教案實(shí)驗(yàn)學(xué)校XX學(xué)校執(zhí)教教師XX課程內(nèi)容《多項(xiàng)式乘以多項(xiàng)式》課程學(xué)時(shí)1所屬學(xué)科數(shù)學(xué)教學(xué)對象八年級一、教學(xué)目標(biāo)知識與技能目標(biāo),用幾何和代數(shù)兩種方法得出多項(xiàng)式與多項(xiàng)式的乘法的法則。,培養(yǎng)學(xué)生的思維能力以及分析和解決問題的能力。過程與方法目標(biāo)1.通過創(chuàng)設(shè)情景中的問題的探索,體驗(yàn)數(shù)學(xué)是一個(gè)充滿觀察和歸納的過程。
2025-04-17 00:25
【總結(jié)】(1)(-x)3·(-x)3·(-x)5=______;(2)(x2)4=_______;(3)(x3y5)4=______;(4)(xy)3·(xy)4·(xy)5=______;(5)(-3x3y)(-5x4y2z4
2024-12-08 09:05
【總結(jié)】湘教版數(shù)學(xué)七年級下冊數(shù)字與字母的積表示的代數(shù)式叫單項(xiàng)式,單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式.幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.回顧思考回顧:什么是單項(xiàng)式?思考:什么是多項(xiàng)式?找規(guī)律56+65=121121是5和6相加的和的11倍565
2024-12-08 10:07
【總結(jié)】義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書SHUXUE七年級下湖南教育出版社怎樣計(jì)算4x2y與-3xy2z的乘積???2243xyxyz???????2243xxyyz????=__________兩個(gè)或兩個(gè)以上的單項(xiàng)式相乘,把系數(shù)相乘,同底數(shù)冪的指數(shù)相加.一般地,我們可以得:zxx3312?根據(jù)乘
2024-11-19 17:48
【總結(jié)】整式的乘法回顧與思考回顧&思考??②再把所得的積相加。?如何進(jìn)行單項(xiàng)式與多項(xiàng)式乘法的運(yùn)算?①將單項(xiàng)式分別乘以多項(xiàng)式的各項(xiàng),?進(jìn)行單項(xiàng)式與多項(xiàng)式乘法運(yùn)算時(shí),要注意什么?①不能漏乘:即單項(xiàng)式要乘遍多項(xiàng)式的每一項(xiàng)②去括號時(shí)注意符號的確定.某地區(qū)在退耕還林期間
2024-11-06 16:37
【總結(jié)】第1頁/共20頁§最小偏差于零的多項(xiàng)式——Chebyshev多項(xiàng)式討論在區(qū)間[1,1]?上,子空間1nP?對函數(shù)nx的最佳一致逼近問題,它可描述為:求*11,nnpP???使之滿足11*111()minnnn
2025-07-26 07:00
【總結(jié)】多項(xiàng)式的加法和減法教學(xué)目標(biāo)1掌握多項(xiàng)式加減運(yùn)算的一般步驟.2會按某個(gè)字母的指數(shù)把多項(xiàng)式進(jìn)行升冪或降冪排列.教學(xué)重點(diǎn)、難點(diǎn):重點(diǎn):多項(xiàng)式的加減運(yùn)算及把多項(xiàng)式按某一個(gè)字母升降冪排列.難點(diǎn):熟練地進(jìn)行多項(xiàng)式的加減運(yùn)算.教學(xué)過程一創(chuàng)設(shè)情境,導(dǎo)入新課[來1復(fù)習(xí)做一做(1)化簡:223
2024-12-08 21:54
【總結(jié)】多項(xiàng)式乘多項(xiàng)式漢川實(shí)驗(yàn)中學(xué)回憶1、單項(xiàng)式乘單項(xiàng)式的法則2、單項(xiàng)式乘多項(xiàng)式的法則問題如圖,為了擴(kuò)大街心花園的綠地面積,把一塊原長a米、寬m米的長方形綠地,增長了b米,加寬了n米。你能用幾種方法求出擴(kuò)大后的綠地面積?abmnbnanbm分析⒈擴(kuò)大后的綠地面積可以
2025-08-16 01:06
【總結(jié)】多項(xiàng)式乘以多項(xiàng)式如果把它們看成四個(gè)小長方形,那么它們的面積可分別表示為_____、_____、_____、_____.dacadbcdababccbddabcdabc如果把它看成一個(gè)大長方形,那么它的邊長為_____、_____,面積可表示為____
2024-11-11 03:46
【總結(jié)】回顧與思考回顧&思考??②再把所得的積相加。?如何進(jìn)行單項(xiàng)式與多項(xiàng)式乘法的運(yùn)算?①將單項(xiàng)式分別乘以多項(xiàng)式的各項(xiàng),?進(jìn)行單項(xiàng)式與多項(xiàng)式乘法運(yùn)算時(shí),要注意什么?①不能漏乘:即單項(xiàng)式要乘遍多項(xiàng)式的每一項(xiàng)②去括號時(shí)注意符號的確定.(a+b)x=?(a+b)x=ax+bx
2024-12-01 02:02
【總結(jié)】§整式的乘法-單項(xiàng)式乘以多項(xiàng)式:(1)各單項(xiàng)式的系數(shù)相乘;(2)相同字母的冪分別相乘;(3)只在一個(gè)單項(xiàng)式因式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式.2.什么叫多項(xiàng)式?幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。(-ab2)(-a3b5c2)27
2025-06-12 19:04
【總結(jié)】2多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.????anbmabamnbnm??????回顧復(fù)習(xí)例3:(1)(x-2)(x2-4)=x3-4x-2x3+8=x3-2x3-4x+8(2)(a-b)(a2+ab+b2)
2024-12-08 03:55
【總結(jié)】二、不可約多項(xiàng)式四、因式分解及唯一性定理一、問題的引入三、不可約多項(xiàng)式的性質(zhì)因式分解與多項(xiàng)式系數(shù)所在數(shù)域有關(guān)如:????422422xxx??????????2222xxx????(在有理數(shù)域上)????????2222xxxixi?????一、
2025-07-24 19:51