【總結(jié)】OABC圓周角和圓心角的關(guān)系頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游
2025-08-01 17:24
【總結(jié)】 《圓周角與圓心角的關(guān)系》說課稿 今天我說課的內(nèi)容是北師大版九年級數(shù)學(xué)(下冊)第三章第三節(jié)《圓周角和圓心角的關(guān)系》的第一課時。下面從教材分析、教學(xué)方法、學(xué)法指導(dǎo)、教學(xué)過程、板書設(shè)計等五個方...
2025-04-03 12:24
【總結(jié)】第五課時課題§3.3.2圓周角和圓心角的關(guān)系(二)教學(xué)目標(biāo)(一)教學(xué)知識點1.掌握圓周角定理幾個推論的內(nèi)容.2.會熟練運用推論解決問題.(二)能力訓(xùn)練要求1.培養(yǎng)學(xué)生觀察、分析及理解問題的能力.2.在學(xué)生自主探索推論的過程中,經(jīng)
2024-12-05 11:52
【總結(jié)】圓周角和圓心角的關(guān)系第三章圓第1課時圓周角和圓心角的關(guān)系導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié),會敘述并證明圓周角定理.能運用圓周角定理及推論解決簡單的幾何問題.(重點),會推理驗證“圓周角與圓心角的關(guān)系”.(難點)學(xué)習(xí)目標(biāo)問題1什么叫圓心角?指出圖中的圓心角?頂點在圓心,角的
2025-06-17 16:41
【總結(jié)】●OEFABC頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游戲中
2024-11-17 13:59
【總結(jié)】方今之時,僅免刑焉!福輕乎羽,莫之知載;禍重乎地,莫之知避。
2024-12-08 03:09
【總結(jié)】【圓周角和圓心角的關(guān)系(1)】(P78-80)【學(xué)習(xí)目標(biāo)】1、知道圓周角的概念;2、掌握圓周角的兩個特征、定理的內(nèi)容及會進(jìn)行簡單的應(yīng)用.一、舊知回顧1、圓心角的定義?——頂點在_________的角叫圓心角.2、圓心角的度數(shù)和它所對的弧的度數(shù)有何關(guān)系?如圖:∠AOB弧AB的度數(shù)3、
2024-11-19 14:39
【總結(jié)】第三章圓《圓周角和圓心角的關(guān)系(第1課時)》教學(xué)設(shè)計說明佛山市華英學(xué)校饒宇藍(lán)一、學(xué)生起點分析學(xué)生的知識技能基礎(chǔ):學(xué)生在本章的第二節(jié)課中,通過探索,已經(jīng)學(xué)習(xí)了同圓或等圓中弧、弦和圓心角的關(guān)系,并對定理進(jìn)行了嚴(yán)密的證明,通過一系列簡單的練習(xí)對這個關(guān)系熟悉,具備了靈活應(yīng)用本關(guān)系解決問題的基本能力.學(xué)生活動經(jīng)
2024-11-28 17:50
【總結(jié)】.BCAOA.OBCA.OBC.BC.2、(1)判別下列各圖形中的角是不是圓周角,并說明理由。(2)指出圖中的圓周角。圖中的圓周角是_∠OAB∠OBA∠OAC∠OCA∠BAC1、什么樣的角是圓周角?圓周
2024-11-23 10:44
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-14 12:04
【總結(jié)】圓周角和圓心角的關(guān)系能力提升,若AB是☉O的直徑,CD是☉O的弦,∠ABD=58°,則∠BCD等于()°°°°,△ABC內(nèi)接于☉O,∠C=60°,AB=6,則☉O的半徑是()(第1題圖)
2024-12-03 11:48
【總結(jié)】圓周角和圓心角的關(guān)系(1)陳愛紅一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.度數(shù)的關(guān)系?B3、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形
2024-11-12 02:37
【總結(jié)】如圖,在足球射門的游戲中,球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠BAC)有關(guān).當(dāng)球員在B、D、E三點射門時,他所處的位置對球門AC分別形成三個張角∠BAC,∠BAC,∠BAC.這三個角的大小有什么關(guān)系?在這三點射門的效果一樣嗎?創(chuàng)設(shè)情境,自然引入探究學(xué)習(xí),感悟新知問題1:觀察圖中的
2024-11-17 18:27
【總結(jié)】圓周角和圓心角的關(guān)系第1課時能力提升,正方形ABCD的四個頂點都在☉O上,點P在劣弧上,是不同于點C的任意一點,則∠BPC的度數(shù)是()°°°°,在☉O中,∠AOB的度數(shù)為m,C是優(yōu)弧上一點,D,E是上不同的兩點(不與A,B兩點重合),則
2024-12-03 05:04
2025-06-17 20:28