【總結(jié)】常見函數(shù)的導(dǎo)數(shù)教學(xué)過程Ⅰ.課題導(dǎo)入[師]我們上一節(jié)課學(xué)習(xí)了導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義.我們是用極限來定義函數(shù)的導(dǎo)數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導(dǎo)數(shù).以后可以把它們當(dāng)作直接的結(jié)論來用.Ⅱ.講授新課[師]請(qǐng)幾位同學(xué)上來用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).=C(C是常數(shù)),求y′.[學(xué)生板演]解:y=f(x)=C,∴
2024-11-19 19:51
【總結(jié)】圓錐曲線的統(tǒng)一定義江蘇省運(yùn)河中學(xué)高二備課組2、雙曲線的定義:平面內(nèi)到兩定點(diǎn)F1、F2距離之差的絕對(duì)值等于常數(shù)2a(2a|F1F2|)的點(diǎn)的軌跡表達(dá)式||PF1|-|PF2||=2a(2a|F1F2|)3、拋物線的定義:平面內(nèi)到定點(diǎn)F的距離和到定直線的距離相等的點(diǎn)的軌跡表達(dá)式|PF|=
2024-11-17 23:32
【總結(jié)】-*-第三章變化率與導(dǎo)數(shù)-*-§1變化的快慢與變化率首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.理解函數(shù)平均變化率與瞬時(shí)變化率的概念.2.會(huì)求給定函數(shù)在某個(gè)區(qū)間上的平均變化率,并能根據(jù)函
2024-11-16 23:23
【總結(jié)】關(guān)于x軸、y軸、原點(diǎn)對(duì)稱圖形方程范圍對(duì)稱性頂點(diǎn)離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點(diǎn)對(duì)稱)1
2024-11-17 17:10
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第3課瞬時(shí)變化率—導(dǎo)數(shù)(瞬時(shí)速度和瞬時(shí)加速度)教學(xué)案蘇教版選修1-1班級(jí):高二()班姓名:____________教學(xué)目標(biāo):1.理解并掌握瞬時(shí)速度的定義;2.會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;3.理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力
2024-12-04 18:01
【總結(jié)】變化率與導(dǎo)數(shù)第三章§1變化的快慢與變化率第三章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí).2.掌握函數(shù)平均變化率的求法.3.理解瞬時(shí)變化率的概念.,當(dāng)空氣容量從V1增加到V2時(shí),氣球的半徑從r(V1)增加到r(V2),氣球的平均膨脹率是________
【總結(jié)】人教新課標(biāo)版(A)選修1-1變化率與導(dǎo)數(shù)同步練習(xí)題【基礎(chǔ)演練】題型一:變化率問題與導(dǎo)數(shù)概念一般地,????1212xxxfxfxf???△△我們稱為平均變化率,如果0x?△時(shí),????xxfxxflimxflim000x0x△△△△△△?????存在,稱此極限值為函數(shù)??xfy?在0x處的
2024-11-15 21:17
【總結(jié)】雙曲線的定義:平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的差的絕對(duì)值等于常數(shù)2a點(diǎn)的軌跡叫做雙曲線。12()FF小于F1,F2-----焦點(diǎn)||MF1|-|MF2||=2a|F1F2|-----焦距.F2.F1Myox注意:對(duì)于雙曲線定義須抓住三點(diǎn)
2024-11-17 23:34
【總結(jié)】鹽城市時(shí)楊中學(xué)2021年達(dá)標(biāo)課教學(xué)簡(jiǎn)案學(xué)科數(shù)學(xué)授課教師張發(fā)軍授課班級(jí)高二(7)教學(xué)內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標(biāo):1、知識(shí)與技能:使學(xué)生掌握雙曲線的如下性質(zhì):對(duì)稱性、截距、頂點(diǎn)、軸、中心、離心率和準(zhǔn)線。使學(xué)生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【總結(jié)】圓錐曲線教學(xué)過程設(shè)計(jì)1.問題情境我們知道,用一個(gè)平面截一個(gè)圓錐面,當(dāng)平面經(jīng)過圓錐面的頂點(diǎn)時(shí),可得到兩條相交直線,當(dāng)平面與圓錐面的軸垂直時(shí),截得的圖形是一個(gè)圓,試改變平面的位置,觀察截得的圖形的變化情況。提出問題:用平面去截圓錐面能得到哪些曲線?2.學(xué)生活動(dòng)學(xué)生討論上述問題,通過觀察,可以得到以下三種不同的曲線:
2024-12-08 21:22
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)平均變化率課后知能檢測(cè)蘇教版選修1-1一、填空題1.函數(shù)f(x)=x+1x在[2,3]上的平均變化率為________.【解析】f(3)-f(2)3-2=(3+13)-(2+12)3-2=56.【答案】562.一質(zhì)
2024-12-04 20:01
【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)值x1、x2
2024-11-18 08:56
【總結(jié)】瞬時(shí)變化率——導(dǎo)數(shù)第1課時(shí)課時(shí)目標(biāo)..1.導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)的幾何意義是:__________________________.2.利用導(dǎo)數(shù)的幾何意義求曲線的切線方程的步驟:(1)求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0);(2)根
2024-12-05 09:29
【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識(shí)回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-17 23:31