【正文】
)d x ; ( 3) ∫31 (2 x -1x2 )d x . [思路點撥 ] 先求被積函數(shù)的原函數(shù),然后利用微積分基本定理求解. [ 精解詳析 ] (1) ∵ ( x2+ 3 x ) ′ = 2 x + 3 , ∴ ∫10(2 x + 3) d x = ( x2+ 3 x ) | 10= 1 + 3 = 4. (2) ∵ (sin x + ex) ′ = c os x + ex, ∴ ∫0- π (c os x + ex)d x = (sin x + ex) | 0- π = 1 - e- π. (3) ∵??????x2+1x′ = 2 x -1x2 , ∴ ∫31??????2 x -1x2 d x =??????x2+1x| 31= 7 +13=223. [一點通 ] 應用微積分基本定理求定積分時,首先要求出被積函數(shù)的一個原函數(shù),在求原函數(shù)時,通常先估計原函數(shù)的類型,然后求導數(shù)進行驗證,在驗證過程中要特別注意符號和系數(shù)的調整,直到原函數(shù) F(x)的導函數(shù) F′(x)= f(x)為止 (一般情況下忽略常數(shù) ),然后再利用微積分基本定理求出結果. 1. ????1e 1x d x = ________. 解析:????1e 1x d x = l n e - ln 1 = 1. 答案: 1 2 .求下列函數(shù)的定積分: ( 1) ∫21 ( x2+ 2 x + 3) d x ; ( 2) ∫π0 ( sin x - c os x )d x ; ( 3) ∫21??????x +1xd x . 解: ( 1) ∫ 21 ( x2+ 2 x + 3) d x = ∫21 x2d x + ∫21 2 x d x + ∫21 3d x =x33 |21 + x2 |21 + 3 x |21 =253. ( 2) ∫π0( sin x - c os x )d x = ∫π