【正文】
} \right.\end{equation}where $\Omega \subset R^nhcuj7d3(d \geq 2)$ is a polygonal domain withthe boundary $\partial \Omega$, $\beta \in L^{\infty}(\Omega)$ is anonnegative realvalue function, $A=(A_{ij}(x))_{d \times d}(1 \leqi,j \leq d)$ is a given positive definite realvalue function matrixwith that $A_{ij}(x)$ is piecewise continuous on $\Omega$, namely,there exist some subdomains $\{ \Omega_1, \cdots, \Omega_M \}$ suchthat $\overline{\Omega} = \bigcup_{k=1,\cdots,M}\overline{\Omega}_{k}$, $\Omega_{k_{1}} \cap \Omega_{k_{2}} =\emptyset$ when $k_{1} \neq k_{2}$,and $A_{ij}(x) \in W^{1,\infty}(\Omega_{k}) \cap H^2(\Omega_k)$.注意: 每一節(jié)的標(biāo)號(hào)自動(dòng)按先后順序生成文章第二節(jié)\section{Preliminaries}Let $T^{h} = \{\tau \}$ consist of shaperegular simplices of$\Omega$ with meshsize function $h(x)$ whose value is the diameter$h_{\tau}$ of the elements $\tau$ containing $x$. For any $G \subset\Omega$, set\[ h_{G} = \max_{x \in G} h(x),\]which is the (largest) mesh size of $ \left. T^{h} \right|_{G}$.參考文獻(xiàn)\begin{thebibliography}{99}\bibitem{ad} {\sc R.~A. Adams},{\em Sobolev Spaces}, Academic Press, New York, 1975.\bibitem{ao1} {\sc M.~Ainsworth and J.~T. Oden},{\em A posteriori error estimates in finite element analys